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Abstract 
A recent trend in dyadic interaction research utilizes multiple 
modalities to better understand phenomena encompassing 
behavior matching (e.g., synchrony, alignment). Concurrent 
research has focused on a complementary framework of 
interaction, assessing the matching of power law distributions 
of behavior across two people: complexity matching. While 
both frameworks provide useful insights into dyadic 
interaction, they have done so independent of one another. 
We visualize the multimodal, multiscale coordination of 
dyads engaged in a tower-building task as networks based on 
the analyses of behavioral and complexity matching in speech 
and movement. We find that network strength relates to task 
performance and that high-performing dyads have weaker 
network strength, which we argue opens up more degrees of 
freedom affording more flexibility in the dyadic system.  

Keywords: communication; complexity matching; 
convergence; dyadic interaction; interpersonal synchrony; 
networks 

Introduction 
Interpersonal communication lives across a number of 
timescales. During face-to-face interaction, our signals to 
one another can last from milliseconds to hours, and smooth 
interaction requires an effective juggling of incoming and 
outgoing signals. We readily perceive and quickly respond 
to more obvious signals like facial expressions and 
linguistic information, but we also influence one another in 
more subtle ways. From language (Brennan & Clark, 1996; 
Garrod & Pickering, 2004) and emotion (Hatfield, Cacioppo, 
& Rapson, 1995) to neural patterns (Stevens, Silbert, & 
Hasson, 2010) and physiological signals (Helm, Sbarra, & 
Ferrer, 2012), research on interpersonal convergence (or 
coordination, entrainment, or synchrony) highlights ways in 
which we influence and are influenced by those with whom 
we interact. This often builds on a large body of joint action 
literature (Clark, 1996), exploring how we come to work 
together. 

Previous research on convergence has tended to focus on 
specific behaviors or patterns (e.g., Louwerse, Dale, Bard, 
& Jeuniaux, 2012), but an emerging and exciting focus 
instead investigates interpersonal convergence of the 

statistical patterns of behavior. This focus is generally called 
complexity matching (e.g., Abney, Paxton, Kello, & Dale, 
under revision; Marmelat & Deligniéres, 2012), contrasting 
with the behavior matching prevalent in traditional 
convergence research. While many behaviors targeted for 
study in behavior matching are overt and perceptible to 
others during interactions, complexity matching focuses on 
convergence at the distributional level of conversational 
properties. 

Complexity matching is a special case of convergence of 
distribution-level patterns of behaviors: It captures the 
matching of behaviors that follow power law distributions. 
Power law distributions are indicative of multiscale 
variations and are exhibited by complex systems (Sales-
Pardo, Guimera, Moreira, & Amaral, 2007), hence the use 
of the term complexity matching to quantify the matching of 
these properties across two people in an interaction.  The 
notion of complexity matching of two humans interacting is 
suggested by recent research showing that when the power 
law distributions of interacting complex systems match, 
optimal information transmission occurs (West, Geneston, 
& Grigolini, 2008). Therefore, we hypothesize that when the 
behaviors of two humans follow a power law distribution, 
the degree of matching between these quantitative patterns 
might reflect properties of the interaction like information 
flow, context, and valence.  

While the framework of behavior matching quantifies the 
one-to-one matching of behaviors during an interaction (e.g., 
gaze patterns; Louwerse et al., 2012), complexity matching 
quantifies the degree to which particular statistical patterns 
(e.g., patterns of behavior that are power-law distributed) 
match throughout an entire interaction. Thus, behavior 
matching and complexity matching are complementary 
measures of interpersonal convergence. In the present study, 
we use both behavior and complexity matching to create 
networks of speech and movement in dyadic interaction 
during a cooperative task. 
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The Present Study 
Just as recent trends in interpersonal interaction research 
combine multiple communication channels into multimodal 
analyses (e.g., Louwerse et al., 2012; Paxton & Dale, 
2013b), our understanding of interaction can significantly 
benefit from integrating analyses on multiple time scales. 
One promising way to do this may be through combining 
behavior matching with complexity matching. Such 
analyses combine these two methods to permit investigation 
of interlocutors’ tendencies to (1) exhibit similar behaviors 
over time (behavioral matching), (2) organize behaviors 
similarly in time (complexity matching), or (3) a 
combination of these two. Two people may not only match 
moment-to-moment behaviors (i.e., behavior matching); 
they may also exhibit behaviors in characteristic ways over 
a longer time course (i.e., complexity matching).  

The present study is aimed at testing this possibility while 
contributing to work on interpersonal convergence and task 
performance. Here, we analyze dyadic interaction during an 
engaging but somewhat challenging collaborative task: 
constructing towers out of marshmallows and spaghetti (e.g., 
Wujec, 2010). Previous work suggests that behavior 
matching may improve collaborative performance (e.g., 
Fusaroli et al., 2012; Valdesolo, Ouyang, & DeSteno, 2010), 
and we therefore anticipate that performance will be 
positively related to increased behavior and complexity 
matching. We also believe that behavior matching and 
complexity matching will be closely related to one another, 
as suggested by some parallel findings across separate 
studies of behavior matching (Paxton & Dale, 2013b) and 
complexity matching (Abney et al., under revision).  

We employ network-style visualizations (Paxton & Dale, 
2013b) to showcase the interconnectivity of these data as a 
comprehensive framework for integrating multiple 
modalities and scales of convergence of the dyadic-level 
system in a relatively intuitive graph. As we describe in 
more detail below, we compare networks of dyadic-level 
variables by partitioning data according to task performance. 
The network visualization focuses on the difference in 
network strengths of high- and low-performing dyads, 
which facilitates investigations of the interaction network. 
Using this method, we hypothesize that high-performing 
dyads should have lower network strengths compared with 
low-performing dyads, as effective cooperative performance 
in complex tasks may require flexible shifting over a range 
of interaction patterns to meet changing task demands. 

Method 

Participants 
Twenty-four undergraduate students (mean age=19.7 years) 
at the University of California, Merced participated as dyads 
in return for extra course credit. Participants signed up for 
time slots anonymously and were unable to see partners’ 
identities beforehand. Dyads included female-female (n=5), 
male-male (n=3), and mixed sex pairings (n=4).  

Materials and Procedure 
Following a brief demographics survey, participants were 
asked to sit in one of two chairs near a table. Seating 
arrangement was not programmatically controlled, and 
participants arranged themselves without experimenter 
direction. The two chairs and table were oriented such that 
the chairs were placed adjacent to each other, with the table 
rotated 45° in line of sight of the camcorder. 

Once seated, the participants were given task instructions. 
Participants were told to construct the tallest tower structure 
possible within 15 minutes using only the materials 
provided: one box (~10 oz) of marshmallows and one box  
(~1 lb) of raw spaghetti. Importantly, only one participant 
seated on the right was allowed to touch the marshmallows, 
and only the participant seated on the left was allowed to 
touch the spaghetti. They were not allowed to use partial 
pieces of materials, and any materials that broke during 
construction were to be immediately removed from the 
tower. Participants were permitted to talk freely during 
construction. After answering any questions, the 
experimenters started the task.  

Experimenters provided 5-minute and 1-minute warnings. 
After the time limit expired, the experimenters recorded the 
height and weight of the tower. Participants were separated 
and rated perceptions of the roles of marshmallow and 
spaghetti holders (“for most people who complete this 
task”) on a 1 (mostly passive) to 4 (mostly dominant) scale. 
This enabled us to investigate how much participants 
believed power should be distributed during the task. 

Apparatus and Data Preparation 
Interactions were recorded on a tripod-mounted Canon 
Vixia HF M31 HD Camcorder. Audio for each participant 
was recorded separately (44kHz sample rate) with two 
Shure Beta 54 supercardiod microphone headsets, an M-
Audio MobilePre recording interface, and Audacity 
software. Two audio files (1 per participant) were recorded 
per conversation. Video and audio files were synchronized 
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with Apple iMovie software and truncated to contain only 
interactions occurring during the task. 

The video files were then analyzed using a frame-
differencing method (FDM) to obtain time series of 
standardized movement scores for each participant based on 
changes in pixels from frame to frame in a recorded 
interaction (see Paxton & Dale, 2013a), such that higher 
numbers in the time series indicated higher amounts of 
overall movement for that participant. The audio files for 
each participant were analyzed by using the Audacity 
“sound finder” to locate acoustic onset/offset intervals. The 
threshold of acoustic intensity was set at -30dB for all audio 
files. Due to low acoustic intensity values for a majority of 
recordings from the left channel, acoustic intensity was 
amplified by 6dB for all audio files from the left channel. 
Movement and speech data were chosen for analysis due to 
their high salience as communication channels during 
interpersonal interaction and the ability to collect both 
unobtrusively during interaction, facilitating naturalistic 
interaction while still collecting multimodal data. 

Analyses and Results 
To better understand the relations between different 
timescales of convergence, we chose to model our data in a 
fully interconnected network-style visualization (e.g., 
Paxton & Dale, 2013b). Each node in this network is a 
single time series or type of data, and each connection 
strength is the effect size of the linear model predicting one 
node to another. All data were standardized prior to being 
entered into the models, allowing estimates to be interpreted 
as effect sizes (Keith, 2005). 

We present a network model of our data comparing 
patterns of multimodal, multiscale convergence exhibited in 
high- and low-performing dyads. This network models the 
interaction at the dyadic level, with all metrics calculated 
across the entire dyad. Before discussing this network, we 
first detail the nodes included. 

Behavior Matching: Cross-Correlational Analyses 
Behavior matching was assessed with cross-correlation of 
participants’ data, which allowed us to explore patterns of 
influence between participants at various time lags. Cross-
correlation shifted data at specified lags (e.g., comparing 
time t of one participant with time t+1 of the other) to 
calculate the extent of correlation between two time series 
within given windows. We calculated the cross-correlation 
coefficients between participants within dyads within +/- 3 
seconds (at 8Hz) for each modality, resulting in a single 

series of cross-correlation coefficients per dyad for 
movement and for speech. The movement cross-correlation 
analyses used the standardized movement time series from 
the FDM analysis; the audio cross-correlation coefficients 
used the on/off speech state time series for each participant. 

Consistent with previous findings (e.g., Louwerse et al., 
2012), we found evidence to support time-locked speech 
and movement behavior matching between participants (ps 
< .001) across the interactions.1  To retain the temporal 
qualities of the cross-correlation coefficients, we created 
interaction terms between these cross-correlation 
coefficients and time lag that serve as the nodes for the 
behavior matching (BM) in our networks. These new 
variables measured the degree of behavior matching 
occurring in a small window of time around simultaneous 
behavior while still weighting behavior matching that occurs 
in time most heavily.  

Complexity Matching: Allan Factor Analyses 
To complement the behavior matching analyses, the 
distributional information from the movement and speech 
behaviors was matched across participants in a dyad. 
Movement and speech behaviors have been observed to 
follow power law-like distributions (Abney et al., under 
revision) and that these distributions match across people in 
various types of interactions. Allan Factor (AF) analysis 
(Allan, 1966) was used to estimate the correlated clustering 
of behavioral events of each type across multiple time scales. 
The AF analysis estimated the variance of behavior events 
(e.g., onsets of movement or speech) at particular time 
scales and computed the correlation estimate (α) across 
those multiple time scales. A scaling relation of behavioral 
events was evidenced when α~1; α~0 was considered a 
Poisson process. This scaling relation is a power law and 
relates to the clustering of behavioral activity across 
multiple time scales (from 160ms to 10s).  

The AF analysis is a point process analysis and requires 
binary spike trains of events and nonevents. For the 
movement data, binary spike trains were computed from the 
original z-score movement series derived from the FDM 
described earlier. Onset/offset states (coded as 1) and 
operationalized as movement that rose or fell above or 
below the mean (respectively); all other states were coded as 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Based on separate linear mixed-effects models predicting cross-
correlation coefficients of movement and speech with lag (+/- 3 
sec) as fixed effect and with dyad and participant as non-nested 
random effects with fully specified random slopes. Movement: ß = 
-.67, p < .001. Speech: ß = -.54, p < .001. Dyads experience the 
highest cross-correlation values at synchrony for both. 
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0. Binary spike trains for speech were computed from the 
interval-level data (onset states = 1; all other states = 0).  

To quantify complexity matching (or the matching of the 
estimates between participants in a dyad), we calculated an 
absolute difference of the AF functions for participants in 
each dyad. These absolute difference values were summed 
over the multiple timescales to create a single value that 
captures the degree of matching. The summed absolute 
difference value was considered the metric of complexity 
matching (CM). Unlike BM, smaller CM values were 
interpreted as higher rates of convergence.  

Behavior Matching and Complexity Matching 
The ability to test the relationship between two scales of 
convergence – behavior matching and complexity matching 
– provides a more comprehensive look into how dyads 
organize speech and movement behaviors across the 
problem-solving task than either alone. For example, 
participants’ movements could phase in and out of 
synchrony but could nevertheless remain coordinated at the 
level of complexity matching (e.g., highly regular turn-
taking structure).	
   Past work has either studied behavior 
matching or complexity matching in completely separate 
studies, often in different domains. In the present work, we 
are able to leverage both techniques’ strengths to better 
understand the multimodal, multiscale interaction structure. 

Before creating the network, we tested the relationship 
between the two convergence patterns for each modality and 
across both halves of the interaction. Results suggested there 
were no reliable relationships between BMspeech and CMspeech 
for the first (β = -.004, p = .373) or the second half of the 
interactions (β = .003, p = .469). However, reliable 
relationships were found between BMmov and CMmov for the 
first (β = -.109, p < .009) and second halves of the 
interactions (β = -.133, p < .001). For participants’ 
movement – but not their speech – behavior matching 
increased concurrently with an increase in complexity 
matching, a trend that increased during the second half of 
the interaction. (Again, greater convergence should be 
reflected in positive BM values and negative CM values.) 

Performance and Social Data 
We next analyzed performance and social measures. The 
performance metric – a ratio of height to weight of the tower 
– captured performance relative to materials used.2 Notably, 
a linear regression confirmed significant relationships 
between performance (as a continuous variable) and 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 This ratio was used due to low variance of height alone.  

measures of convergence. Improvements in performance 
were reliably predicted by BMspeech (β = .087, p = .04), 
BMmov (β = .163, p < .001), and CMspeech (β = -.470, p 
< .001) but not CMmov (β = .045, p = .274). We calculated a 
median split to obtain high- and low-performing groups. 

We also created a dyadic-level variable operationalizing 
the perception of role distribution. For each dyad, we 
calculated a dyad-level dominance score for the spaghetti 
holder as a sum of each participant’s dominance rating for 
the spaghetti holder, divided by the sum of the participants’ 
individual perceptions of the marshmallow holder’s 
dominance. This variable – which we call “role distribution” 
– tapped into dyads’ expectations about role division: 
Higher values indicated the dyad overall endorsed a stronger 
leader-follower dynamic in the task, while lower values 
implied a more egalitarian expectation for the interaction.   

Generating Network Visualizations 
For the networks, we divided the data into two equal groups 
along the performance variable. We performed a series of 
linear models, each predicting one node by one other node 
until fully interconnected network was complete. The 
resulting effect sizes for each model were used as the 
connection strengths between nodes. 

For a broad measure of network strength, we computed 
the average effect size for each network using the absolute 
values of effect sizes, allowing averages to be agnostic to 
positive versus negative effect sizes. We chose to use the 
absolute rather than the signed values due to the differences 
in BM and CM metrics: Higher convergence would yield a 
higher BM metric but a lower CM metric. All effect sizes 
obtained from the models were included in the calculation 
of the network strengths, regardless of p-value, to provide a 
full estimate of all connections: Connections not significant 
at p < .05 had an average absolute connection strength 
of .04 (range = |.002-.09|) and were equally distributed 
across the networks. Additional calculations of network 
strengths using only significant (p < .05) connections and 
only significant-to-marginal (p < .1) connections followed 
patterns similar to those using all connections. 

It is important to note that, while these visualizations offer 
an inherently interesting look at the data, the significance 
levels are not essential to the inferences we make about the 
network structures. Effect sizes from the linear models then 
become data for the comparative network analysis. The 
connection strengths are summed to obtain a single measure 
of network strength, and all connections of each individual 
network are fed into t-tests, which constitute our comparison 
between the networks. 
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Performance Network We created two independent 
networks by grouping the dyads with a median split on the 
performance variable (see Figure 1). To explore differences 
in the unfolding of the interaction, both BM and CM 
measures for the first and second halves of the interaction 
(noted in superscript) were included as nodes in these 
networks. Consistent with our hypothesis, high-performing 
dyads (M = .20, SE = .19) had a lower network strength 
relative to low-performing dyads (M = .26, SE = .26), t(71) 
= 3.35, p = .001, suggesting that more flexibly coupled 
dyadic networks may be free to respond more effectively by 
converging only in key channels (cf. Fusaroli et al., 2012). 

Discussion 
Utilizing network visualization techniques (Paxton & Dale, 
2013b), the present study provides a first look at the 
connections across multiple types of interpersonal 
convergence in multimodal communication. We have 
presented a network diagram detailing the relationships 
between behavior matching and complexity matching of 
movement and speech modalities. By partitioning dyadic-
level networks by task performance, we are able to gain 

insights into differences between high- and low-performing 
systems. We find that high-performing dyads have 
statistically lower network strengths than do their low-
performing counterparts. This may mean that high-
performing dyads have more open degrees of freedom, 
yielding flexibility that the dyad can leverage to optimize 
performance on problem-solving tasks.  

Additionally, the network analysis structure allows us to 
qualitatively observe how specific connections change from 
low- to high-performing dyads. For example, for low-
performing dyads, more complexity matching (i.e., lower 
CM values) of movement during the second half of the 
interaction predicts less behavior matching, while greater 
complexity matching in the same setting is associated with 
more behavior matching in high-performing dyads. Thus, 
the coordination patterns across multiple time scales 
changes depending on the performance of dyads. This might 
relate to a functional mechanism (cf. Louwerse et al., 2012) 
for multiscale coordination: Higher correspondence of 
multiple coordination patterns relates to increased 
communicative benefit (i.e., task performance).  

When behavioral synchrony and complexity matching 
metrics are partitioned across time and modality, differences 

Figure 1:  Network visualizations for the low- (left) and high-performing (right) dyads. Connections are effect sizes obtained 
from linear models between nodes and are color-coded by strength. Nodes represent behavior matching (BM) and complexity 
matching (CM) for speech and movement (subscript) and half (superscript) and perception of role distribution. Arrows signal 

bidirectional correlational relationship (not necessarily causal influence) as a graphical convenience. 
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between the two types of convergence emerge. For instance, 
behavior matching and complexity matching differentially 
predict relative dominance in high-performing dyads. 
Increased complexity matching in both modalities across the 
interaction strongly predicts participants’ beliefs in distinct 
social roles during the task, whereas behavior matching does 
not strongly affect the relative dominance construct. We 
believe this result highlights the importance of studying 
behavior matching and complexity matching together: 
While both capture the degree to which individuals affect 
one another during interaction, each may provide unique 
insights into patterns of interaction to which the other is 
blind. 

Conclusion 
Previous research has supported the existence of behavior 
matching and complexity matching separately during 
interaction, but this is (to the authors’ knowledge) the first 
study to examine the two in concert. We have sought to 
combine the meaningful individual contributions of each 
level of interpersonal convergence to more fully understand 
the structure of multimodal communication on surface and 
statistical levels. Consistent with the view of interaction as 
interpersonal synergy rather than strict convergence (e.g., 
Fusaroli et al., 2012; Riley et al., 2011), the present study 
finds that task performance differs with the interpersonal 
structure and that optimal performance may be characterized 
by greater flexibility within the structure. By presenting and 
analyzing multiscale and multimodal datasets through 
network visualizations, we have been able to allow the data 
to suggest interesting future directions for the dataset during 
our initial investigation of theoretically driven questions.  
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