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Abstract 

Conversations between people are characterized by complex 
nonlinear combinations of nonverbal and neurocognitive 
responses complementing the words that are spoken. New tools 
are needed to integrate these multimodal components into 
coherent models of conversation. We present a study and 
analysis pipeline for integrating multimodal measures of 
conversation. Data were collected using video recordings and 
functional near-infrared spectroscopy (fNIRS), a portable 
neuroimaging technology, during dyadic conversations among 
strangers (N=70 dyads). Rather than running discrete analyses 
of neural and nonverbal data, we introduce a pipeline to 
combine time series data from each modality into multimodal 
deep neural networks (DNNs) – including channel-based 
fNIRS signals and OpenFace data that quantifies facial 
expressions over time – using S2S-RNN-Autoencoders. We 
explored two measures to examine the resulting t-SNE space: 
distance and synchrony. We found that across the dimensions 
integrating neural and nonverbal input features, conversing 
dyads tend to stay closer together than permuted pairs. Dyads 
exhibit significantly higher synchrony in their covariation in 
this space compared to permuted pairs. The results suggest a 
mixed methodological integration may contribute to a deeper 
understanding of the dynamics of communication. 
Keywords: conversations, multimodal dynamics, deep neural 
network (DNN), functional near-infrared spectroscopy 
(fNIRS), hyperscanning, brain-to-brain synchronization, 
dimension reduction, integrative pluralism. 

Introduction 
Conversations are complex combinations of verbal, 
nonverbal, and neurocognitive responses. This sheer 
complexity of conversation has been recognized by scholars 
across various disciplines, across cognitive science (Grosz & 
Hirschberg, 1992; Garrod & Pickering, 2004; Holle et al., 
2012; Raczaszek-Leonardi, 2014; Özyürek, 2014; Galati & 
Brennan, 2014; Paxton et al., 2016; Mondada, 2016; Zima & 
Bergs, 2017; Rasenberg, Özyürek, & Dingemanse, 2020; 
Reece et al., 2023), including psycholinguistics (Iverson & 
Thelen, 1999; Willems et al., 2007; Holler et al., 2013; Pouw 
et al., 2020) and conversation analysis (Goodwin & Heritage, 
1990; Schegloff, 1996; Stivers & Sidnell, 2005; Sidnell, 
2006; Schegloff, 2007; Enfield & Sidnell, 2017; Goodwin, 
2018; Stivers, 2021). Understanding what underlies and 
explains this complexity represents a still-evolving domain of 
research. 

Even a single conversational turn is a high-dimensional 
performance involving behavioral, cognitive, and neural 
processes, often quite distinct. Speakers manage both the 
perceptuomotor characteristics of nonverbal behaviors along 
with more abstract words, phrases, and meanings. These 
processes unfold at widely varying timescales. Eye 

movements and social attention can change on the order of 
milliseconds, while topics of conversation are managed more 
slowly across minutes. How can we develop novel 
approaches to integrate all these elements in a way that 
mirrors how the mind processes multimodal information? 

Cognitive  neuroscientists have found a neurobiological 
metric that characterizes whether people are ‘in sync’ during 
interactions called neural synchrony, the temporal 
correspondence in neural activity patterns during 
interpersonal interaction, with cross-brain alignment 
indicating the coupling of people’s separate neurocognitive 
systems (Lieberman, 2022). Studies using fMRI have 
demonstrated that neural synchrony can be an effective 
neurobiological marker for like-mindedness. For example, 
higher neural synchrony during video-viewing is associated 
with more similar interpretations of the video content 
(Nguyen et al., 2019) and closeness in the real-life social 
network (Parkinson et al., 2018).  However, one major 
limitation of using fMRI for social interaction research is that 
MRI scanners isolate participants from the outside world and 
prevent natural conversations.  

Addressing this limitation, functional near-infrared 
spectroscopy (fNIRS), a portable neuroimaging technology, 
allows studies of social interactions in their natural 
environment. Certain fNIRS studies using the neural 
synchrony metric have been explicitly conducted to 
investigate verbal communication between dyads (see Kelsen 
et al., 2022; Jiang et al., 2012; Zhang et al., 2018).  

While these fMRI and fNIRS studies revealed that neural 
synchrony can effectively show whether two people are “on 
the same page” (Dieffenbach et al., 2021), its application in 
multimodal analysis presents challenges. Synchrony is clear 
in activities like watching a video together but less so in 
conversations that involve turn-taking. Moreover, there is a 
discernible gap in the literature regarding the integration of 
neural and behavioral signals during social interactions. This 
divide in the research highlights a critical oversight in social 
neuroscience and indicates a pressing need for new 
approaches to explore interactions between pairs. Our 
pipeline contributes to multimodal integration and can be 
extended to other modalities such as body movement and 
speech.  

Progress in deep neural networks (DNNs) has facilitated 
the conversion of complex data, including images (Caron et 
al., 2018), audio (Cramer et al., 2019; Purwins et al., 2019), 
and text (Rosen & Dale, 2023) into numerical representations 
known as embeddings. These condensed numerical 
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representations facilitate analysis and uncover underlying 
patterns that may not be immediately discernible. For 
instance, they can be employed to establish correlations 
between dense vectors and brain signals or other dependent 
variables (Goldstein et al., 2022; Schrimpf et al., 2021). 
DNNs are valuable when grappling with sparse and high-
dimensional data, and address the alignment challenge across 
multiple modalities and time scales. 

Numerous studies have employed DNNs to transform low-
level features, including visual (McMahon et al., 2023), 
semantic (Huth et al., 2016; Heilbron et al., 2022), and 
phonetic elements (Gong et al., 2023) into vectorized 
representations for brain-predictive modeling. However, 
previous research has often focused on each modality 
independently, stemming from the divergent data structures 
and temporal resolutions inherent to each modality, thus 
limiting the exploration of multimodal integration. 

Our approach to modality alignment uses a recurrent neural 
network (RNN) architecture capable of processing time-
series data by considering temporal dependencies (Tealab, 
2018). RNN solves the challenge particularly by converting 
sequential data into one dense embedding (e.g., representing 
a sequence of word tokens with a sentence embedding), 
allowing multimodal signals with different frequencies to be 
integrated at the embedding level. To generate a dense 
embedding that represents the input signals without 
conditioning on a specific task, we constructed a Sequence-
to-Sequence RNN Autoencoder (S2S-RNN- Autoencoder), 
utilizing the same input and output (Strobelt et al., 2019; Lyu 
et al., 2018). Autoencoders enable us to integrate multiple 
signal channels (e.g., facial movement and neuro signals) by 
projecting them into the latent space through self-supervised 
vectorization (Jiang et al., 2024). 

Integrating the methods from cognitive science, social 
neuroscience, and machine learning, this paper presents a 
new pipeline that tackles the challenge of modality 
integration by utilizing DNNs  for both unimodal and 
multimodal representations. These dense integrative 
representations, in combination with other downstream 
dimensionality reduction analyses (such as t-SNE), allow 
researchers to analyze sequential data in a latent space that 
can be theoretically meaningful (e.g., synchrony and 
proximity). Together, this pipeline enables scholars to better 
triangulate how social interactions are supported by different 
modalities such as the brain and facial expressions. 

 

Data 

Procedure 
Two strangers engaged in a get-to-know-you conversation 
while seated face-to-face, with topics of discussion displayed 
on a computer screen one-by-one (Fig 1). The original design 
of this experiment contrasted depth of topic (Kardas et al., 
2022). Example topics include: How’s the weather today? 
How often do you get your hair cut? What is one of the more 
embarrassing moments in your life? Participants are 

instructed to try to stay on topic, and when they are done with 
one topic, click the button to move on to the next one. Every 
session is designed to last for 20 minutes and occurs without 
the presence of experimenters, thereby allowing a natural 
conversation flow. 

 

 
Figure 1: Experiment setup. Stranger dyads are equipped with 
fNIRS. Three GoPro cameras are placed in the room – two 
capturing the two participants’ facial expressions, and one 
capturing the scene from a third-person perspective. 
 

During the experiment, participants wore a functional near-
infrared spectroscopy (fNIRS) rig with coverage of cortical 
regions implicated in social interactions (Fig 2), such as 
mentalizing (Gallagher et al., 2000, Wang et al., 2018). Three 
GoPro cameras are placed in the room to record 
conversations and nonverbal behaviors. Specifically, one 
camera is placed  in front of each participant to record their 
facial expressions and the third camera captures both 
participants together. Participants also complete 
questionnaires about their personal traits and experiences 
with the conversation. 

Participants 
We recruited 70 dyads (21 male-male, 25 female-female, and 
24 male-female) from the UCLA Departments of Psychology 
and Communication subject pools as well as flyers on the 
UCLA campus. The study was approved by the UCLA IRB 
(#22-001209) and informed consent was obtained from all 
subjects. 

Neural Data Acquisition  
Participants were scanned using a mobile fNIRS system 
(NIRSport2 by NIRx Medical Technologies, LLC, NY).  

The probe layout was comprised of 16 light sources and 16 
detectors with a 3-cm average source-detector separation 
distance, which forms 42 channels (source-detector pairs) for 
partial-brain coverage across mentalizing (i.e., medial 
prefrontal cortex (mPFC) and temporo-parietal junction 
(TPJ)) and working memory regions (i.e., lateral prefrontal 
cortex (lPFC) and superior parietal lobule (SPL)) (Fig 2). The 
montage layout (Fig 2) was created in accordance with the 
10-10 UI external positioning system to ensure consistency 
across head sizes. We measured participants’ head sizes and 
then fitted them with caps of appropriate sizes that affix the 
optodes to the scalp. Raw light intensity data was collected at 
a sampling rate of 5.09 Hz at wavelengths of 760 and 850 nm. 
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Figure 2: fNIRS montage consists of 42 channels for partial-
brain coverage of cortical regions implicated in social 
interactions (i.e., medial prefrontal cortex (mPFC), temporo-
parietal junction (TPJ), lateral prefrontal cortex (lPFC) and 
superior parietal lobule (SPL)). 
 

Data Processing 

Facial Video Data Processing 
For behavioral data, we focused on facial keypoint dynamics 
under the framework of Facial Action Coding System 
(FACS), an anatomically based system for describing all 
visually discernible facial movements (Ekman & Friesen, 
1978). This comprehensive system breaks down facial 
expressions into individual components of muscle 
movement, called Action Units (AUs). This project employs 
OpenFace, a computer vision system that automates the 
detection and analysis of AUs (Baltrušaitis et al., 2016)  

 
Figure 3: Facial Video Data Processing. Demonstration for 
facial movement analysis using OpenFace. Left: Feature 
extraction based on the Facial Action Coding System 
(FACS), an anatomically based system for describing 
visually discernible facial movements. Top right: The left-
right and up/down angles of gaze is reported per video frame. 
Bottom right: FACS-based individual components of muscle 
movement, called Action Units, are reported.  

Neural Data Processing 
Collected NIRS data underwent a comprehensive 
preprocessing pipeline. This pipeline1 utilized custom scripts 
in MATLAB alongside the Homer2 software suite (Huppert, 

 
1 https://github.com/abinnquist/fNIRSpreProcessing 

Diamond, Franceschini, & Boas, 2009), adhering to 
established fNIRS best practices (Yücel, 2021). Emphasis 
was placed on analyzing oxyhemoglobin (HbO) 
concentrations, which prior research has indicated are more 
responsive to changes in cerebral blood flow than 
deoxyhemoglobin (HbR) levels work (Pan et al., 2017). 

The preprocessing began with removing unrelated data – 
each time-course was truncated based on a trigger that 
indicated the start of the conversation. Noisy and 
oversaturated channels were identified and excluded using a 
modified quartile coefficient of dispersion (Bonett, 2006), 
with specific thresholds adjusted for the sampling rate 
(Cthresh = 0.6 – 0.03*sampling rate).  

Further refinement of the data included corrections for 
motion and non-neural changes in blood oxygenation. To 
address motion artifacts, discrete wavelet transform 
techniques (Molavi & Dumont, 2012) were performed to 
remove spike artifacts. To address non-neural physiological 
influences (e.g., cardiac and respiratory rhythms) and 
baseline drift, a conservative bandpass filter (0.008-0.2 Hz) 
was applied. Past work suggests that the cognitive dynamics 
of interest in this study are primarily manifested in lower 
frequency ranges (Sasai et al., 2011; Zuo et al., 2010). 

Filtered data were then transformed from optical density to 
hemoglobin concentration values. This conversion used the 
modified Beer Lambert Law (MBLL) with a standard 
differential path length filter [6, 6], commonly applied to 
adult cortical tissue to account for light dispersion.  

The final quality control step involved an autocorrelation 
change assessment to gauge the impact of motion correction. 
Channels displaying a substantial change in autocorrelation 
(exceeding a threshold of r = 0.1) were deemed significantly 
influenced by motion and thus excluded from subsequent 
analyses. 

Multimodal Data Processing 
Model Architectures An RNN is a neural network capable 
of modeling sequential data and time-dependent tasks 
(Tealab, 2018), such as text generation, speech recognition, 
and stock market prediction. RNN represents an iterative 
function that takes an input sequence (x) and an internal state 
(h) from the previous timestep (t - 1) to predict the current 
timestep (t), then updates the state as follows: 
 

ℎ! = 𝑓(𝑥!"#, ℎ!"#)						𝑡	𝑖𝑛	{0, 1, 2, …𝑇 − 1}	
 
We selected the RNN model for representing integrated 
multimodality because it can process temporal information 
under the assumption that the facial AUs and fNIRS signals 
in each timestep depend on signals in the previous timesteps 
(Jiang, 2023). A Long-Short-Term-Memory (LSTM) RNN 
was chosen over the vanilla RNN because the latter 
experienced the vanishing-gradient problem during model 
training, which inhibited it from effectively leveraging 
context between elements by maintaining its internal state 
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throughout the sequence (Sherstinsky, 2020). LSTM, which 
is represented by the function f in the equation, was 
introduced here as an additional state variable (i.e., the cell 
state) for controlling specific information that needed to be 
kept or updated while processing the entire sequence (Joo et 
al., 2019). As a result, LSTM effectively reduced the 
vanishing-gradient problem encountered by RNN 
(Sherstinsky, 2020). 

Next, we constructed multiple autoencoders to 
independently vectorize facial AUs and fNIRS signals, and 
then integrated them. An autoencoder is a neural network 
architecture that contains three components: encoder, 
bottleneck, and decoder (Michelucci, 2022). The model 
learns to reconstruct the input data by compressing (encoder) 
it into a lower-dimensional embedding (bottleneck), then 
reconstructing it back into its original form or any target form 
(decoder). When  the output is the same as the input, this 
process allows the network to learn a compressed, latent 
representation of the input data that captures the most salient 
features of the original data. This method is commonly used 
for dimensionality reduction and self-supervision. In this 
case, because ht represents a lower-dimensional compression 
that can nevertheless reconstruct temporal sequences of 
multimodal behavior, this embedding quantitatively 
summarizes how these channels go together in that moment 
of the interaction (details shown in Fig. 4). 
 
Multimodal Integration In our pipeline2, time-series data 
for both fNIRS and facial AUs were initially segmented into 
approximately 5-second chunks (approximation due to 
frequency misalignment between multiple modalities). Due 
to the different temporal resolutions between video data 
(around 30 FPS) and fNIRS (5.09 Hz), we first constructed 
separate S2S-RNN-Autoencoders for each modality and then 
employed another fully-connected-network (FCN)-
Autoencoder to integrate these modalities at the chunk-level. 
While downsampling the high-frequency modality is also a 
viable option for enforcing temporal alignment across 
modalities, this approach would  unavoidably lead to 
information loss during the sampling process. Therefore, we 
opted to vectorize facial movement and fNIRS independently 
and then integrate them at each 5-second interval. 

 
2 github.com/JoyceJiang73/Multimodal-Integration-Autoencoders 

All autoencoders were trained using the Adam optimizer 
with a learning rate of 0.001. The loss function used was the 
sum of mean squared errors (MSE) that measure the average 
squared difference between the input data and the 
corresponding reconstructed output across all dimensions. 
Intuitively, this MSE calculates the loss to ensure that similar 
input patterns are mapped to similar representations. The 
batch size was set to 32, and all models were trained for 20 
epochs. 

Each 5-second data point had a shape of 147 timesteps (i.e., 
frames) x 35 dimensions for facial AUs and 25 timesteps (i.e., 
frames) x 40 dimensions for fNIRS signals. The S2S-RNN-
Autoencoder comprised one layer of LSTM for both the 
encoder and decoder, with each LSTM layer having input, 
output, and hidden dimensions matching the dimension of 
each data point (i.e., 35 dimensions for AUs and 40 
dimensions for fNIRS).  

After vectorizing each modality at the 5-second interval, 
we constructed an FCN-Autoencoder with one layer of FCN 
for both the encoder and decoder. The input, output, and 
encoding dimensions were all set to 75, which is the 
combination of dimensions from facial AUs and fNIRS 
channels. This autoencoder allowed us to obtain embeddings 
that vectorize the modality integration for time-series data. 

Finally, in order to interpret the high-dimensional data, we 
applied t-SNE, a technique for visualizing high-dimensional 
data in a lower-dimensional space (van der Maaten & Hinton, 
2008). Applying the Rtsne function (Krijthe et al., 2018) to 
these vectorized multimodal embeddings, we obtained a 3-
dimensional representation of dyads’ conversations. Figure 5 
plots the first and second dimensions of the t-SNE space as a 
demonstration of the resulting 3-dimensional multimodal 
data. The visualization indicates that the clustering of 
embeddings (by dyad) is preliminarily aligned with our 
expectations: chunks from the same dyad tend to be closer to 
each other,  without obvious outlier data points. A more 
sophisticated analysis was conducted in the following 
section. 
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Figure 5: Visualizing the t-distributed Stochastic Neighbor 
Embedding (t-SNE) Space. Each color represents one of the 
70 dyads in the dataset. Every point corresponds to a five-
second segment of input. The x and y axes represent the first 
and second dimensions of the 3-dimensional representation 
of dyadic conversations within the t-SNE space.  
 

Dyadic Interactions in t-SNE Space 
We define each dyad of two individuals engaging in a 
conversation as a distinct cluster (of time points) to examine 
questions about dyadic interactions: Do dyads in different 
conversations share unique interactive signatures? How do 
these patterns differ from those observed in permuted pairs 
(i.e. surrogate baseline)?  

We first chose a random time slice for an individual, then 
chose comparison slices at the same time point from two 
different individuals: (1) the other individual within the same 
dyad and (2) an individual randomly sampled from a different 
dyad. The first comparison aimed to capture the dynamics of 
a dyad. In contrast, the second comparison involving 
permuted pairs served as a control to represent non-
interacting pairs. This process was iteratively conducted 
10,000 times across the entire dataset, comprising 33,997 
time slices and 70 dyads. As a result, we generated 10,000 
within-cluster (i.e. dyads) and 10,000 across-cluster (i.e. 
permuted pairs) comparisons. 

We propose two measures to examine the resulting t-SNE 
space: proximity and synchrony. Results show that 
conversing dyads score differently on these measures than 
permuted pairs, indicating unique interactive signatures. 

Distance  
The first measure is inspired by Pickering and Garrod (2004), 
whose prominent framework predicts that interacting 
participants tend to align their behaviors, which may result 
from a priming mechanism that drives probabilistic structure 
of interaction to be more behaviorally similar. In the lower-
dimensional t-SNE space we explore, this manifests as the 
proximity of facial expressions and neural signals, which we 

define as the average distance between members of a dyad in 
the t-SNE space computed by Euclidean distance.  

Linear regression analysis for distance yielded a clear 
result. Comparing across the first two dimensions of the t-
SNE space, the average distance was significantly lower in 
within-cluster analyses compared to across-cluster analyses 
(β = -2.28, t = -14.46, p < .00001). In other words, the average 
distance between dyads engaging in conversations is 
significantly shorter than permuted pairs.  

These tentative results are confirmed by a multilevel 
regression analysis.  In all three dimensions of the t-SNE 
space, we conducted multilevel analysis with fixed effects as 
the distinction between dyads and permuted pairs, and 
random effects as variance within clusters. Results show that 
individuals in dyads engaging in conversations are 
significantly closer to each other (t = 15.78, p < 0.00001).  

Our analysis demonstrates that across the fundamental 
dimensions integrating neural and nonverbal input features, 
dyads tend to stay closer together than permuted pairs. These 
results extend ideas about alignment (Pickering & Garrod, 
2004) to a framework that highlights neuro-behavioral 
integration. 

 

 
Figure 6: Illustration of proximity. Each dot represents one 5-
second segment of data in the t-SNE space. Colors represent 
dyads. The blue dyad has high proximity at the selected time 
slice, and the red has low proximity. 

Synchrony  
Various researchers have suggested that humans approximate 
coupled oscillators while interacting (Strogatz & Stewart, 
1993; Wilson & Wilson, 2005; Wiltshire et al., 2020; Miao et 
al., 2023). In the course of a conversation, participants 
attending to each other show a tendency to synchronize their 
movements (Dahan et al., 2016; Wiltshire et al., 2020; 
Sabharwal et al., 2022). Similarly, neural synchrony has been 
associated with a tendency towards greater social connection 
(Parkinson et al., 2018). In our analysis, synchrony appears 
as concurrent movements of two individuals in the same 
direction at the same time in the t-SNE space. We quantify 
dyadic synchrony as two individuals’ co-variation of position 
across the t-SNE space measured by Pearson’s correlation (r). 

Given the inherent clustering of our data by dyads and the 
presence of individual differences, multilevel analysis was 
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deemed most suitable for examining dyadic synchrony. The 
dependent variable in our analysis was the average Pearson’s 
r across three dimensions within the t-SNE space. The model 
accounts for fixed effects based on the distinction between 
dyads and permuted pairs, while the random effects were 
attributed to the variance within clusters, thereby addressing 
the issue of data non-independence within these clusters. 
 

 
Figure 7: Illustration of synchrony. Each dot represents one 
5-second segment of multimodal data in the t-SNE space. 
Colors represent distinct dyads. Individuals in both dyads are 
highly synchronous with their partner.  
 

Results suggest that when pairs were permuted, the 
resulting mean correlation coefficient approached zero, 
indicating a significant decrease in synchrony compared to 
dyads (t = 4.94, p < 0.00001). On the contrary, for dyads 
engaging in conversations, the average correlation coefficient 
was significantly greater than zero at 0.05 (t = 6.03, p < 
0.00001). This finding substantiates that dyadic synchrony is 
higher in real interactions within a dyad than baseline.  

 

General Discussion 
We introduced a novel data processing pipeline that  
integrates video and fNIRS recordings during natural 
conversations across 70 dyads. To explore interactive 
signatures inside the resulting multimodal, we compared 
conversing dyads with permuted pairs (i.e., surrogate 
baseline). We found that conversing dyads are significantly 
closer to each other than permuted pairs. Dyads also exhibit 
significantly higher synchrony in their covariation in this 
space compared to permuted pairs. 

Using this pipeline, future papers could examine such 
datasets to investigate differences amongst conversing dyads 
focusing on a variety of theoretical questions. We aim to 
pursue such questions, including: Do interactive signatures 
differ across dyads that reported varied levels of connection 
after conversations? How does the depth of conversational 
topics affect interactive signatures and reported connection?  

Our approach uses statistical models to integrate 
multimodal data in a way that may reflect related human 
cognitive processes. Many multimodal investigations tend to 

disassemble complex interactions into parts (e.g., words, 
gestures, facial expressions, and neural fluctuations) and 
analyze them separately. Yet, in an important sense, the 
human brain does not have the privilege of the scientist – to 
disassemble everything and carefully analyze it in parts. Our 
approach pursues how such integration may be conducted on 
the fly, during natural interaction. 

Compared to other multimodal investigations that use 
innovative approaches to combine modalities without DNNs 
– such as multidimensional recurrence quantification analysis 
(MdRQA) (Wallot et al., 2016; Amon et al., 2019) and 
multivariate Surrogate Synchrony (mv-SUSY) (Tschacher & 
Meier, 2019) – our approach enables the conversion of 
sequential multimodal signals that can have different 
frequencies into dense embeddings through DNN 
architectures. This allows integration at the embedding level 
without substantial information loss. Additionally, the 
introduced pipeline serves as the first step for more 
comprehensive multimodal integration and investigation, 
which can be extended to other modalities such as body 
movement and speech. Given that semantic signals are 
usually not aligned with behavioral signals in a uniformly 
consistent way, using the DNN-based approach can 
circumvent this constraint by incorporating DNN-based 
language models (such as RNN or BERT) as an additional 
layer. 

This paper describes our methodological pipeline. Our 
future work will examine questions related to dimensional 
interpretations and modality comparisons, including: What 
are interpretations of the three compressed multimodal 
dimensions in a qualitatively meaningful way? How do the 
results from multimodal analyses differ from the results of 
unimodal analyses? Do lower-dimensional spaces give clues 
to the nature of mechanisms of multimodal integration? 

This work raises the prospect that we could gain a deeper 
understanding of the dynamics of communication by a mixed 
methodological approach, incorporating independent sources 
of data across sensory modalities. Using this pipeline, we can 
better triangulate how social interactions are supported and 
accomplished by different modalities, and identify cognitive 
mechanisms underlying social goals, including establishing 
interpersonal connections and beyond.  
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