
How two people become a tangram 
recognition system
Rick Dale
Department of Psychology, The University of Memphis
radale@memphis.edu

Natasha Z. Kirkham
Centre for Brain and Cognitive Development, Birkbeck, University of London
natasha@eyethink.org

Daniel C. Richardson
Cognitive, Perceptual & Brain Sciences, University College London
dcr@eyethink.org

Abstract. In the tangram task, two participants have the same set of abstract shapes, set 
out in different orders. One participant must instruct the other to arrange their shapes so 
that the orders match. In the course of the task, participants must find a way to refer to 
these abstract shapes. In our experiment, we tracked the eye movements of two 
participants engaged in a computerized version of the task. We found the canonical 
tangram effect: participants became faster at completing the task from round 1 to round 
3. Also, eye-movements synchronize over time. We used cross recurrence analysis to 
quantify this coordination, and use it to show that as their words coalesce, their actions 
approximate a single coordinated system. 

Introduction
In the current work we ask how a shared reference system transforms the 
behavior of those using it. Ostensibly, it permits its users to perform reference 
tasks much more efficiently. If you and I both know what “the jingly one”  refers 
to, each time one of us employs it, the other can sharply orient to the appropriate 
referent. This skill is most often measured by completion time of these reference 



tasks. Here we show that something else occurs, more fundamental than simply 
pace of success: An emerging referential scheme induces partners in a reference 
task to become a coupled visual attentional system. To do this, we investigate a 
well-understood joint task used extensively in previous work: the tangram task 
(see below). Going below previous levels of analysis of word usage and 
completion times in the tangram task, we quantify the coupling between eye-
movement patterns, and show that the signature of attentional coupling changes 
across rounds as the referential scheme is agreed upon by two task partners. In 
short, we show the emergence of the tangram-identification system that the pair of 
participants in this task becomes. 

In the tangram task, pairs of participants are asked to identify unfamiliar 
shapes (Krauss & Weinheimer, 1966; Krauss & Glucksberg, 1969). One of these 
participants, called the “director,”  is responsible for describing a chosen shape to 
the second participant, the “matcher,”  who does not know which shape but is 
responsible for selecting it among an array of six possible shapes. The director’s 
and matcher’s screens do not match, because the shapes are placed in different 
orders. The director must therefore use careful description in order for the 
matcher to succeed. Once all six shapes are identified, they repeat this task. A 
robust pattern of change occurs as they recognize the six shapes again and again: 
Participants take less time to solve the task, require fewer words to do so, and end 
up with a jointly constructed scheme of shorthand descriptions for the shapes 
(Clark & Wilkes-Gibbs, 1986; see Clark, 1996, Chapter 3, for a detailed review). 

Once multiple rounds are performed by the pair, they are capable of effectively 
identifying tangrams, and completing the task quite rapidly. Indeed, the resultant 
processes operating in the pair seem to have produced a coherent, functional unit 
(Hutchins, 1995) of two parts -- a “tangram identification system.”  This 
characterization goes beyond metaphor given the constraints of the task and the 
coordination problem subjects face. An emerging referential scheme weaves 
director/matcher cognitive processes into systematic tangram recognition 
performance, and the dyad operates in a fraction of the time that the director and 
matcher first required to do the task. Here we use gaze tracking and cross 
recurrence analysis to reveal how two people perform this act of coordination.

Methods
Participants 20 pairs of participants were recruited, and performed the tangram 
task for class credit. One participant in a pair was randomly assigned to the 
director role, and the other was assigned to matcher. 8 of these pairs did not 
provide mouse-movement data do to technical problems. The remaining 12 pairs 
formed the basis of eye-mouse analyses (see below).



Apparatus Two eye tracking labs on different floors of a building were used. 
In one of the labs an ASL 504 remote eye tracking camera was positioned at the 
base of a 17”  LCD display. Participants sat unrestrained approximately 30”  from 
the screen. The display subtended a visual angle of approximately 26º x 19º. The 
camera detected pupil and corneal reflection position from the right eye, and the 
eye-tracking PC calculated point-of-gaze in terms of coordinates on the stimulus 
display. A PowerMac G4 received this information at 33ms intervals, and 
controlled the stimulus presentation and collected looking time data. The second 
lab used the same apparatus with one difference: The display was a 48”  x 36”  
back projected screen and participants sat 80”  away (this lab was designed for 
infants under a year old). A slightly larger visual angle of approximately 33º x 25º 
was subtended in this second lab. Participants communicated through hands-free 
headsets which used an intercom feature on 2.4Ghz wireless phones.

Stimuli 6 tangram shapes were used, similar to those used in previous work. 
These shapes derive from combinations of common geometric objects (squares, 
triangles, etc.), and many appear to be humanoid-like forms with subtle 
distinctions among them. These were projected in a randomized fashion in a 2x3 
grid to both director and matcher. 

Procedure Once participants obtained their respective director/matcher role 
(remaining constant throughout the experiment), they proceeded to identify the 
six shapes in random order. When the matcher identified the 6th (of 6) shape, a 
new round was initiated by the software, and the tangram shapes were again 
randomly ordered in the 2x3 display. Three rounds of communication took place.   

Data and analysis During the task, at a sampling rate of approximately 30Hz 
(~33 ms slices), we extracted three behavioral signals: (De) the tangram fixated 
by the director, (Me) the tangram fixated by the matcher, and (Mm) the tangram 
fixated by the matcher’s mouse cursor. For any given participant pair and 
communication round, 3 time series were thus produced, two sequences of eye 
movements and one sequence of mouse movements. For each round, separate 
analyses were conducted on the 3 possible alignment pairings: director’s and 
matcher’s eye movements (De-Me), matcher’s mouse and eye movements (Mm- 
Me), and director’s eyes / matcher’s mouse (De-Mm). To explore the patterns of 
coordination in these pairings, we conducted a version of cross-recurrence 
analysis. This analysis simply compares all time points of two time series, and 
generates a lag-based percentage of how much matching or “cross-recurring”  (i.e., 
tangram fixation) is taking place at each lag. By plotting this percentage match, 
known as percentage recurrence or %REC, across all lags, we generate a 
recurrence lag profile reflecting the pattern of coordination between the two time 
series (akin to a “categorical”  cross-correlation function). When the %REC is 
largely distributed to the right or left of such a plot, it has direct bearing on the 
leading/following patterns of the systems producing those time series. For 
example, consider the darkest line Figure 1a. This is the eye-movement %REC 



profile for De-Me on round 1, and the largest proportion of recurrent looks is 
occurring at the lag which indicates the director leads the matcher. This is what 
would be expected in round 1 (see Dale, Warlaumont, & Richardson, 2011 and 
Richardson & Dale, 2005 for more methodological detail). 

 We anticipate that these profiles will change their position and shape as the 

task unfolds. To quantify how these profiles change, we treat them as distributions 
of temporal data. For example, in Figure 1a, the darkest line can be treated as a 
probability distribution of lags. The mean lag will be the central tendency of the 
overall coordination pattern, kurtosis will reflect how pointed the coordination is, 
etc. Such a distribution analysis of the recurrence profile will permit us to 
quantitatively describe how they change shape and position.

 We extracted 5 characteristics of the recurrence lag profiles we generated 

for each dyad, round, and modality combination. First, we measured the overall 
mean recurrence across the whole profile (avg. %REC). This would be akin to 
measuring the mean density of a probability distribution (mean of y-axis values). 
This simply reflects, in a +/- lag window, how much overall cross-recurrence is 
occurring between two time series. Second, we measured the maximum %REC 
occurring in the profile. This is equivalent to finding the value of the maximum 
density (maximum y-axis value), and reflects the maximum recurrence, achieved 
at one of the lags. Third, kurtosis and dispersion (SD) of the profiles were 
produced. The first of these measures reflects the pointedness of the coordination. 
A high kurtosis would indicate the presence of coordination within a small lag 
window, occurring for a shorter, pointed period of time; lower kurtosis would 
reflect a broad lag window during which states are recurrent. Dispersion (SD) has 
the inverse interpretation, and is calculated by treating the profile as a distribution 
of lags and finding the standard deviation of the sample. Finally, we measured the 
central tendency (mean) of the profile. This is equivalent to finding the point 
along the x-axis (here, a lag in seconds) that reflects the center of the distribution. 
This would measure the overall weighted center of the recurrence profile. A 
positive or negative mean (different from 0) would be indicative of leading or 
following by one of the time series.

To our knowledge, this paper serves as a first demonstration of the value of 
quantifying lag-sequential profiles in this way. We intend these distribution 
measures to serve as simple yet intuitive quantitative indices that characterize 
coupled channels.

Results
Completion time. As in previous tangram experiments (see Clark, 1996), dyads 
become effective at performing the task. Participants required an average of 
139.5s in the first round, 58.2s in the second, and 35.6s in the third (p < .0001). 



Shuffled vs. non-shuffled lag profile. We first conducted a shuffled baseline 
analysis for all measures. This was done by performing the same lag-profile 
analysis but with shuffled versions of our time series. As would be expected, the 
total recurrence in all analyses within the +/-10-second window we explored was 
substantially higher in the non-shuffled vs. shuffled conditions (p’s < .0001). This 
main effect of shuffling held in each round when analyzed separately. In short, 
coordination is significant across all rounds compared to baseline, across all 
analyses: De-Me, De-Mm, and Mm-Me. The question we explore in distribution 
analyses below is how that coordination is organized.

Director-matcher eye-movement synchronization (De-Me). The recurrence 
lag profiles for the alignment between director’s eye movements and matcher’s 
eye movements is shown in Figure 1a. To analyze individual distribution values 
across the 20 pairs, we used a linear mixed-effects model treating subject as a 
random factor, and tangram round as the sole fixed effect. This analysis revealed 
several significant changes over rounds. 

 First, the overall recurrence (mean %REC) drops from round to round, 

F(1,57) = 12.2, p < .001, with overall recurrence higher in round 1 (30.3%) than 
rounds 2 (24.5%) and 3 (21.1%; p’s < .005). 

 Second, there is also a main effect of round for the maximum %REC 

achieved, F(1,57) = 3.3, p = .04. Round 1 (39.3%) has a lower maximum %REC 
value than round 3 (45.0%; p < .05), with round 2 (42.1%) in between (but not 
significantly differing from these). It is important to note that this maximum 
difference may not be visible in Figure 1a, because the maximum of the averaged 
profiles is not necessarily the same as the average of the maximum of the profiles 
(e.g., consider two non-overlapping normal distributions have higher average 
maximum, than the maximum of their average).

 Third, kurtosis if these distributions increases across rounds, as is indeed 

visible in the average profiles, F(1,57) = 14.2, p < .001. Rounds 3 (2.4) and 2 
(2.1) had higher kurtosis than round 1 (1.9; p’s < .05). Likwise, dispersion in 
terms of the standard deviation (in seconds) of the profiles is decreasing from 
round 1 (5.5s) to 2 (5.2s) to 3 (4.8s; F(1,57) = 20.7, p < .001).
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Figure 1. Round 1 is in black, round 2 mid grey and round 3 is in light grey. (a) Direct-matcher 
eyes, (b) Matcher mouse - matcher eyes; (c) director eyes - matcher mouse

(a)                                              (b)                                                (c)




 Finally, the mean of this lag profile (in seconds) is changed from round to 
round, F(1,57) = 7.6, p = .001. The center of these profiles are shifting towards 0s, 
with round 1 (-.7s) and round 2 (-.8s) significantly lower than 0s, t’s < 4, p < .001. 
By round 3, however, the recurrence lag profiles have an average center of .3s, 
which is not significant from 0, t(19) = .9, p = .4.

Overall, the recurrence lag profiles between the eye movements of director and 
matcher is becoming more sharply (higher kurtosis, lower dispersion) 
synchronous (center near 0) across rounds of communication.

Matcher mouse-movement / matcher eye-movement synchronization 
(Mm-Me)  As noted above under Participants, 8 of the pairs did not supply 
matcher mouse tracking due to technical errors. We used the time series (Mm and 
Me) from the remaining twelve to conduct the same linear mixed-effects analyses 
on the recurrence lag profile characteristics. Parallel to the statistics reported in 
the previous section, we obtained the following results.

 Overall recurrence is again diminishing across rounds 1 to 3 (34%, 24.7%, 

to 22.3%, respectively), F(1,33) = 10.5, p < .001. Maximum recurrence is not 
changing over rounds, though the direction of the effect is suggestive of the same 
pattern (49.8%, 51.3%, and 56.7%, across rounds), F(1,33) = 2.4, p = .11. Indeed, 
in individual comparisons, round 3 did have significantly higher recurrence than 
round 1 (p < .05), though the overall main effect of round is not significant. 
Kurtosis did significantly change over rounds, F(1,33) = 4.0, p < .05 (2.1, 2.4, and 
2.5 from rounds 1 to 3), though dispersion did not seem to change, but is again in 
the same direction as seen in the previous analysis (5.1s, 4.8s, and 4.7s), F(1,33) 
= 1.4, p = .25. The mean of the lag profile did not change, F(1,33) = .11, p = .9. 
Interestingly however, the mean was stable from round to round (.5s, .6s, .6s) and 
this mean value was significantly greater than 0, t(35) = 4.3, p < .001. This 
suggests that there is a stable leading by the eyes by approximately 590ms.

 Though the pattern of significance is different, likely because of the 

lessened power given lost data, the same general patterns held. The drop in 
average %REC and increase in kurtosis suggests that the eyes and hand are 
becoming more sharply coordinate in time. In addition, the stability in the mean 
value, and significant deviation from 0, suggests a structural limitation of the 
matcher’s hand-eye coordination: there is consistent leading of hand by eye. 

Direct eye-movement / matcher mouse-movement synchronization (De-
Mm) In analysis of the 12 pairs that provided Mm data, the following results 
held. First, there appears to be a drop again in mean density of %REC (29.4%, 
22.7%, 22.1%), but this is not significant, F(1,33) = 2.1, p = .14. Maximum 
%REC value is marginally significantly increasing from round to round (42.6%, 
48.0%, and 54.6%), F(1,33) = 2.6, p = .08. Kurtosis (2.1, 3.1, and 2.5) and 
dispersion (5.2s, 4.5s, and 4.6s) also did not achieve significance, F(1,33)’s < 3. 
Interestingly, the mean was again relatively stable in these profiles (-1.0s, -1.5s, 
and -1.0s) indicating that the director’s eyes lead the hand of the matcher by 



approximately 1 second, t(35) = -.39, p < .001. In general, results argue for an 
even greater invariant of matcher’s hand following the director’s eyes, than the 
delay on the matcher’s own eyes. 

Conclusion
At the beginning of this task, when director and matcher have not yet become 
coordinated through referential expressions, the director’s eyes lead the matcher’s 
eyes, which in turn lead the matcher’s hand. Results suggest that, by the final 
round, systematic cross-modal coordination has emerged. We characterized this 
change using distribution analysis over the lag profiles obtain from cross-
recurrence analysis. It is not simply that the director and matcher achieve the task 
faster, but they are strongly synchronized in their shared eye movements. The 
matcher’s hand remains lagged, likely due to an “anchoring” to spatial indices in 
the visual workspace. As the eyes of director and matcher sample the world to be 
potentially responded to, the hand stays steady above candidate decisions. With 
the emerging interplay among multiple behavioral channels, the two participants 
are therefore acting as a single, coordinated “tangram recognition system.”

This characterization of the pair as a single “system”  fits well with the 
backdrop of recent work on coordinating referential domains during interaction. 
For example, in a review by Tanenhaus and Brown-Schmidt (2008), they 
showcase extensive recent work in which participants in interactive tasks are 
subtly influenced by shared and unshared information, suggesting that 
coordination is a central component of naturalistic interactive tasks. In particular, 
Brown-Schmidt, Campana, and Tanenhaus (2005) used a complex referential 
domain to show that attention and comprehension are coordinated tightly as 
participants get accustomed to the tasks together. In addition, Sebanz and 
colleagues (Sebanz, Knoblich, & Prinz, 2003) have argued that the very 
representations and processes used by partners in a task come to overlap simply 
by being co-present, but particularly by being jointly involved and aware of each 
other’s roles during the task (see also Knoblich & Jordan, 2003). Indeed, the 
language-as-action tradition (as described in Tanenhaus & Brown-Schmidt, 2008 
and Clark, 1996), which sees one person’s communication system as largely 
doing things to or with others, encourages a view consistent with recent 
perspectives on cognition as “soft-assembling”  (e.g.,  Kugler, Kelso, & Turvey, 
1980) into loosely coupled functional systems during interactive tasks (Shockley, 
Richardson, & Dale, 2009).

The tangram task is a carefully controlled experimental context to measure this 
soft-assembly of a two-person joint system. The properties of this tangram 
identification system are highly similar to those that have been identified in 
individual cognitive systems. We conclude with Hutchins (1995) and Sebanz et al. 



(2003) that two-person systems exhibit the same loose coupling under task 
constraints that a single cognitive processor exhibits, further demonstrating that 
pairs of people may serve as coherent units of analysis themselves.
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