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Research on the evolution of language has grown rapidly, and is now a large and diverse field.
Because of this growing complexity as a scientific domain, seeking new methods for exploring
the field itself may help synthesize knowledge, compare theories, and identify conceptual inter-
sections. Using computational methods, we analyze the scientific content presented at EvoLang
conferences. Drawing on 365 abstracts, publication patterns are quantified using Latent Dirich-
let Allocation (LDA), which extracts a semantic summary from individual abstracts. We then
cluster these semantic summaries to reveal the frameworks and different domains present at
EvoLang. Of course, our results show that EvoLang is an interdisciplinary field, attracting re-
search from various fields such as linguistics and animal studies. Furthermore, we show that
the framework of iterated learning and cultural evolution is a hub topic at EvoLang.

1. Introduction

In this paper, we explore the conceptual structure of research on language evolu-
tion itself by analyzing the submissions to the EvoLang conference over the past
10 years. Our goal is to provide insight into the network of theories, concepts, and
methods that populate this growing field. Since its inception in 1996, EvoLang has
become a prominent and well-attended conference. It is now the premiere confer-
ence on language evolution, with more than 100 presentations at the last EvoLang
in Vienna and over 300 delegates in attendance. This is a five-fold increase from
the first EvoLang in 1996. How might we quantify this rapidly growing scientific
content?

There are numerous reviews of language evolution which attempt to unpack
and relate its various theories and debates (e.g. Christiansen & Kirby, 2003; Bick-
erton, 2007; Fitch, 2010). These provide impressive coverage, especially consid-
ering the diversity and complexity of language evolution research. Research at
EvoLang tackles a wide range of these topics, spanning the many levels of lan-
guage, from the evolution of flexible signalling strategies, to the social cognitive
processes that may undergird human linguistic skills.

In what follows, we use topic modeling (Griffiths & Steyvers, 2004; Yau,
Porter, Newman, & Suominen, 2014) to extract the set of latent conceptual topics



that make up EvoLang. We find that there are three distinct conceptual clusters
that can be inferred from the abstracts, including the iterated learning framework
and comparative studies. Second, we combine these topic clusters with a co-
authorship network analysis to assess the relative influence of these typical topic
clusters, finding that the iterated learning cluster in particular serves as a central
hub in the broader EvoLang community. By analyzing the knowledge bases of
EvoLang, it may be possible to attain a firmer grip on the state of the art in the
field, and the relationships among its various theories.

2. Modeling the content of EvoLang submissions

We selected all abstracts from submissions between 2006 and 2014 with more
than 500 characters.a We then applied a Latent Dirichlet Allocation algorithm
(Blei, Ng, & Jordan, 2003) on the resulting 375 abstracts, a method that is com-
monly used in scientific content analysis (Griffiths & Steyvers, 2004). In LDA,
each document (here, abstract) is represented by a distribution over topics, and
the topics themselves are represented by a distribution over words. That is, each
topic consists of a distribution of semantically related words, and each abstract
can then be represented as a combination of these topics, which make up the gist
of the document. For example, one abstract at EvoLang may combine the topics
of non-human communication and learning, while another may combine syntax
and computation. Importantly, the algorithm first extracts numerically identified
topics, which are then interpreted by the researcher – so the example topic com-
binations here are simply hypothetical. Researchers typically inspect numbered
topics (topic 1 . . . topic k), and these topics are then interpreted from their asso-
ciated words. As we show below, this can result in a compelling intuitive set of
topics.

After running the algorithm with a various number of topics, we selected the
model of best fit, which contained 20 topics. Example topics are shown in Table
1 with associated terms. Note in the table that we have used a stemmer algorithm
to obtain roots (e.g., “compar”, “abil”), to decrease the type-token ratio, and fa-
cilitate topic extraction. To further analyze the content, a correlation matrix of
the probability distributions for the topics was calculated and a network of posi-
tively related topics was generated. Then, a community detection algorithm (Pons
& Latapy, 2005) was used to cluster these topics. We found that the algorithm
clustered the content of EvoLang submissions broadly into three communities or
clusters. The resulting network is shown in Fig. 1, with the different clusters
marked by color.

But what do these clusters consist of? To get more insight into the topics as-
sociated with each cluster, we extract the most probable terms associated with the

aAbstracts before 2006 were published in a different format and were thus omitted to keep the data
consistent.



Figure 1. Network of positively correlated topics. The thicker an edge, the stronger the correlation.
Topics belonging to the same cluster share a color. An interactive version of this plot is available on
http://shiny.tillbergmann.com/apps/evolang/

topics in each cluster. The first cluster covers general terms covering linguistics
and language evolution, but also more specific topics such as word order in topic
19 (see Table 1). The second cluster is more specific, including comparative stud-
ies involving primates and birds, as well as the study of gestures and music (Table
2). Lastly, papers in the third cluster approach language evolution through cultural
evolution and iterated learning, as well as the emergence of structures in commu-
nication experiments (Table 3). Inspecting these terms and communities gives a
good overview of different fields within EvoLang, and indeed, both the clustering
and most probable terms make intuitive sense.

In general, these clusters show that EvoLang hosts a variety of sub-fields,



which approach the study of language evolution from varying angles. Not only
does it include more theoretical linguistic work, but also comparative studies are
well represented. Certainly this is well known intuitively by researchers within
the community, but the analysis here suggests that there are crisp clusters that can
be automatically extracted using the topic model. In the next section, we look at
the author collaboration networks of EvoLang. This serves both as an illustration
of the range of authorship patterns, as well as being the measure through which
we further analyze the interconnectedness of these three topic clusters.

Table 1. Terms associated with cluster 1.

Topic 1 Topic 7 Topic 10 Topic 15 Topic 16
languag semant evolut human symbol
evolut evolutionari select abil evolutionari
evolv grammar extend language icon

evolution syntax behavior research language
language structur term share protolanguag

framework approach factor compar sound

Topic 17 Topic 18 Topic 19 Topic 20
system process word signal
evolut cognit order communic
paper brain inform mechan

complex evolut divers behaviour
increas specif cue explain
stage propos speaker provid

Table 2. Terms associated with cluster 2.

Topic 3 Topic 4 Topic 5 Topic 6 Topic 8 Topic 12
modern question vocal speech song gestur
present differ human origin learn communic
suggest music primat function development ape

air speech call involv genet studi
evid pattern product action finch intent

homo show produc area complex system

Table 3. Terms associated with cluster 3.

Topic 2 Topic 9 Topic 11 Topic 13 Topic 14
communic learn linguist emerg model

studi mean cultur languag social
game categori bias develop agent
refer experi evolut form popul

experiment structur languag sign network
strategi iter learn languages interact



Figure 2. A network showing collaborations between authors. Nodes represent authors and are col-
ored with respect to their dominant cluster. The thicker an edge, the more collaborations between the
nodes. An interactive version of this plot is available on http://shiny.tillbergmann.com/apps/evolang/.

3. The interconnectedness of authors and clusters

By constructing an authorship network from co-authored abstracts, we can detect
which authors have a high interconnectedness at EvoLang. Authors who publish
and collaborate often are referred to as “central,” and by virtue of their centrality,
we can also assess the contribution of their associated topics in their collabora-
tions. In this network, each node is an author, and each edge between two nodes
represents collaboration between these two nodes/authors. Edge weight (connec-
tion strength) is determined by the number of collaborations between these two
authors. Using the topic clusters from the above analysis, we calculated the most
prevalent cluster for each author, based on which cluster their respective papers
were assigned. By plotting the author network (Fig. 2), we can see that there
are some hubs in the middle of the network, as well as some collaborations out-
side these general hubs, not connected to the rest of the network. These smaller



Figure 3. Betweenness and eigenvector centrality, on a log-scale. Each point represents an author,
with the color representing their cluster. A few noteworthy authors are labeled. An interactive version
of this plot is available on http://shiny.tillbergmann.com/apps/evolang/.

collaborations often consist of advisor-advisee relationships within the same lab
or department. The color of the nodes represents the respective cluster an author
has mainly published in. As not all papers were included in the content analysis
due to abstract length, some nodes remain white because their cluster could not
be determined. The bigger hubs in the center of the network mainly belong to
cluster three, covering the iterated learning framework. Cluster 1 and 2 are more
interspersed, and cluster 2 forms its own smaller hubs, showing a strong sense of
collaboration in comparative studies.

After constructing the network, centrality measures were used to detect the
most influential authors within this network. In network theory, there are multiple
ways to measure the centrality of nodes (Freeman, 1978; Koschützki et al., 2005).
Here, we look at two values: eigenvector centrality and betweenness centrality.
Eigenvector centrality measures the influence of a node by assigning a score based
on connections to high scoring nodes (here, nodes with a lot of collaborations and
thus submitted papers). The score is bound between 0 and 1, with 1 representing
highest centrality. Betweenness centrality assigns a score based on how often the
node is part of the shortest path between two other nodes, and thus measures how
well a node connects different parts of a network. These nodes are considered
to be important in communication between other nodes and keeping the network
connected. Fig. 3 shows the centrality measures of authors on a log-scale (purely
for illustrating purposes): Authors with high eigenvector values but low between-
ness have close contact to important people, while authors with low eigenvector
values but high betweenness values serve as valuable connections between nodes.



In the plot, there is a division between authors with a high and low Eigenvector
centrality. Authors with a high Eigenvector centrality tend to be in cluster 3, while
authors in cluster 1 are more likely to have low Eigenvector centrality. Cluster 2
authors seem to be more interspersed.

Table 4. Summary statistics for each cluster of topics.

Cluster M(Eigenvector) SD(Eigenvector) M(Betweennes) SD(Betweenness)
1 0.003033 0.01517 63.29 227.6
2 0.002757 0.01482 220.42 782.2
3 0.037867 0.12790 336.23 1113.3

Table 5. Summary of multinomial logistic re-
gression showing log-odds and standard errors.

Dependent variable:

Cluster 1 Cluster 2

Betweenness −0.001 0.0001
(0.0003) (0.0002)

Eigenvalue −21.989∗ −25.957∗

(0.001) (0.001)

Constant 0.275∗ 0.137
(0.128) (0.132)

Akaike Inf. Crit. 866.008 866.008

By using the centrality measures calculated for each author, we were able
to deduce the influence of each topic cluster. That is, to which cluster do the
most widely collaborating individuals belong? Table 4 shows summary statistics
for the author centrality measures in each cluster. Not surprisingly, cluster 3 has
both the highest average eigenvector and betweenness centrality, however, it also
has the highest deviations. While the deviations suggest that there is a lot of
variation within clusters, it looks like cluster 3 is the most central set of topics
within EvoLang.

To test whether this difference in centrality measures is significant, a multi-
nomial logistic regression was run with the clusters as a dependent variable, and
the two centrality measures as the independent measures. Cluster 3 was chosen
as the baseline community, as we hypothesized that it had higher centrality than
the other two clusters. The model output is summarized in Table 5 and was sig-
nificant compared to a null model (χ2(4) = 44.208, p < 0.0001). Significance
values were calculated using Wald tests. Coefficients for betweenness centrality
were not significant (Cluster 1: p = 0.08, Cluster 2: p = 0.59). However, eigen-
vector centrality was a significant predictor for both cluster (p < 0.0001 for both



clusters). As the log odds are very high, any increase in eigenvector centrality
increases the probability of that a paper is in cluster 3.

From this analysis, we conclude that cluster 3, which appears strongly re-
lated to iterated learning and cultural evolution, serves as a “hub cluster” within
EvoLang. However, as the betweenness centrality was not a significant predictor
of cluster/framework, authors within each cluster serve as an important connection
between other authors, and clusters as a whole.

4. Summary

We analyzed the content of abstracts presented at EvoLang. Our analysis of latent
topics shows that EvoLang is an interdisciplinary conference, and seems to draw
from three major clusters of topics. Using a network analysis of author collabora-
tions, we investigated these clusters with regard to their influence. Our results sug-
gest that the iterated learning and cultural evolution framework is associated with
a high centrality property within EvoLang. Comparative studies with primates are
an important interconnector between authors and communities, while the clus-
ter covering linguistic approaches is interspersed and well represented throughout
the conference. The interconnectedness of the author network suggests that each
cluster draws inspiration from each other, and that in fact no single framework –
according to the LDA topic model – is isolated from any other.

Though these patterns may be intuitive to highly initiated attendees of the con-
ference, the purpose of this paper is to demonstrate that scientometric techniques
can be used to reveal these patterns quantitatively. With just under 400 abstracts,
a number of natural authorship and conceptual patterns emerge. It may be useful
and interesting to carry out similar analyses in subsequent years to discern how
this field is changing, and how topic clusters may be converging or co-fertilizing.

References

Bickerton, D. (2007). Language evolution: A brief guide for linguists. Lingua,
117(3), 510–526.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3, 993–1022.

Christiansen, M. H., & Kirby, S. (2003). Language Evolution: The Hardest
Problem in Science? In M. H. Christiansen & S. Kirby (Eds.), Language
evolution (pp. 1–15). Oxford: Oxford University Press.

Fitch, T. W. (2010). The Evolution of Language. Cambridge, MA: Cambridge
University Press.

Freeman, L. C. (1978). Centrality in Social Networks: Conceptual Clarification.
Social Networks, 1(3), 215–239.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. PNAS, 101,
5228–5235.
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