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Abstract 
How does the mind sustain lengthy, continuous performances? 
Cognitive processes are continuous, dynamic and adaptive. 
However, until recently, we didn’t have the methodological 
tools to study these features. In this study, we use Detrended 
Fluctuation Analysis (DFA) and a sliding window, to analyze 
the change in the fractal structure of body movement during the 
delivery of an academic lecture. We show that fractal structure 
varies widely during performance but also reveals a strong 
attraction towards 1/f noise. Our analysis also uncover a 
general inverted U pattern in the fractal organization of the 
performance: speakers exhibit relatively low exponents (i.e., 
less structure) at the beginning of their talk, that then increase 
as they get into their performance, and then decrease again as 
they finish their narration. This trajectory mirrors the familiar 
idea of academic lectures as performances in which we set up 
an argument, develop that argument, and conclude that 
argument.  

Keywords: 1/f noise; fractal exponents; video analysis; 
communication; dynamic systems.  

Introduction 
Human cognition happens as a continuous stream from the 
moment we wake up to the moment we go to sleep. Our 
cognitive system goes from one activity to the next, engaging 
series of functions at multiple timescales, intertwined in 
interactions with the body and world, as a performance ever 
unfolding over time. The continuous and embedded nature of 
cognition makes it difficult to parse and isolate functions for 
study, so experimentalists typically use trials containing brief 
tasks separated by short breaks (Spivey, 2008). These 
snapshots of performance afford experimental control, and 
averaging over trials yields general patterns in how cognitive 
systems perform these isolated tasks.  

One of the many properties and principles to come out of 
this rich tradition of experimental research is that cognitive 
performances are exquisitely context-dependent (Van Orden, 
Holden & Turvey, 2003; Kello, Brown, et al., 2010). Despite 
these robust findings, the focused nature of experimental 
research leads one to ask how these findings may apply in 
natural continuous performances, beyond the laboratory and 
often under more complex and less controlled contexts (cf. 
Kingstone, Smilek, & Eastwood, 2008). The way in which 
the cognitive system sustains its performance over time in 
complex tasks is a fundamental question in our field. The way 
the mind dynamically adapts to changing goals and 
environments, the way it structures itself to perform tasks as 

varied as solving the tower of Hanoi or cooking a delicious 
meal—all have been on cognitive science’s “to-do list” from 
the beginnings of the discipline (Simon, 1962, 1992). In this 
paper, we present an analysis of the unfolding dynamics of a 
complex cognitive activity. Indeed, it is one that readers of 
this paper are probably quite familiar with: giving an 
academic talk.  

Talks are dynamic on many levels (Abrahams, 2016), but 
in terms of physical activity, they involve systematic 
variations in the amplitude and rate of speech, gestures, and 
other movements that accompany the delivery of the message 
(Alviar, Dale, & Galati, under revision). Talks are also 
multimodal. They involve the use of verbal and non-verbal 
elements (Abraham, 2016), as well as the use of technology 
and objects in the environment for the creation and 
transmission of meaning (Pozer-Ardenghi & Roth, 2010). 
Talks involve covariation between modalities that suggests 
the existence of system-like patterns in the way speakers 
coordinate different signals during lecturing (Alviar et al., 
under revision). Lastly, the delivery of a speech when giving 
a talk exhibits hierarchical temporal structure that differs 
from the structure found in other communicative activities 
like conversations. At the same time, the same type of nested 
structure, seems to be common to the act of delivering a 
monologue presentation, irrespective of its topic or language 
(Kello et al., 2017).  

There are a variety of methods that could be used to capture 
nested structures in talks and other cognitive performances 
(see Riley & Van Orden, 2005). Fractal methods stand out in 
that they gauge nested structures explicitly in terms of 
quantifiable fractal exponents. Fractals describe the 
correlation and self-similarity of behavior at different spatial 
or temporal scales. That is, they describe the relationship 
between the patterns of variation observed at larger and 
smaller scales of analysis (Van Orden et al., 2003). Indeed, 
Van Orden and colleagues (2003, 2011) have argued that 
fractal structure can reveal smooth coordinated behavior in a 
system; in other words, when its many parts are working 
together to sustain complex and time-extended behaviors.  

Recent work has looked to the variation in fractal 
exponents to further examine how they reflect cognitive 
processes. Anastas, Stephen, and Dixon (2012) used fractal 
exponents to study executive control and rule discovery in a 
categorization task. The authors applied Detrended 
Fluctuation Analysis (DFA) as they slid a window over time 
series of measurements taken from the participants’ hand 



movements while sorting cards into groups. Participants that 
had to infer the sorting rule exhibited a series of fractal 
exponents that followed an inverted U pattern: The fractal 
exponent increased as the participants explored candidates 
for the sorting rule and decreased again as they constrained 
their behavior to comply with the inferred sorting condition. 
Similarly, in an earlier study of mathematical discovery, 
Stephen, Dixon, and Isenhower (2009) found that the entropy 
(i.e., disorder) on hand movement variation increased right 
before a new representation of a mathematical problem was 
achieved. From these examples, it seems like changes in 
scaling exponents are a common feature of cognitive 
performance and foretell qualitative changes in the 
organization of the cognitive system.  

The studies by Stephen and colleagues demonstrate how 
time series of fractal exponents can shed light on the 
dynamics of cognitive processes over timescales on the order 
of minutes. To date, most studies of fractal structure in 
behavior and cognition have analyzed relatively short 
performances coming from experimentally collected data. 

 In the present study, we use time series of fractal 
exponents to examine the dynamics of a longer, more natural 
cognitive performance: academic lectures. Curiously, this 
complex behavior is a widely documented one, often 
recorded under relatively stable camera positions and 
reasonable audio-video quality. It is also easily accessible, 
with many available online, including our own seminar series 
from University of California, Merced. By using 
automatically extracted body-motion time series, we can 
obtain precisely the type of time series that allow the study of 
fractal dynamics. Our goal was to examine whether there are 
common patterns of change in fractal exponents over the 
course of a continuous cognitive performance, akin to the U-
shaped pattern found by Anastas et al. (2012). In other words, 
an academic talk may show this kind of shift towards more 
fractal organization as speakers transition into their 
performance. Then, as a talk wraps up, that structure may 
dissipate as a speaker completes the complex performance. If 
so, then fractal dynamics can usefully describe cognitive 
processes that are organized to sustain longer and complex 
natural performances over time.  

 Method 

Video Recordings 
We reanalyzed data from a previous study (Alviar et al., 
under revision) that contains information on the variation of 
different communication modalities during the course of an 
academic lecture. The dataset contains repeated 
measurements of 30 speakers who participated in the Mind, 
Technology and Society seminar series at UC Merced. 
Because prior work from Stephen and others has shown that 
body motion can reveal interesting fractal structure in the lab, 
and reflect relevant cognitive processes involved in 

                                                             
1 https://vimeo.com/user8418321 
2 www.youtube.com/channel/UCRcuWjRqxZ2RHvEdZGAli 

Ww/videos?shelf_id=0&view=0&sort=dd 

communication (Paxton & Dale, 2013), we used a similar 
measure here. As detailed below, we used an automatic optic-
flow analysis over videos of academic talks to obtain the 
body movement of these speakers. There are 30 talks in the 
dataset (22 men), with an average duration of 56.45 minutes 
(SD = 10.21 min). The video recordings of the talks do not 
include the Q&A portion of the seminar. The selected talks 
were of sufficient video and audio quality to be suitable for 
automated analysis (for detailed information on inclusion 
criteria, see Alviar et al., under revision). The analyzed 
videos are publicly available in Vimeo1 and YouTube2. 

Procedures 
Body Movement Data We downloaded the videos from 
YouTube and Vimeo in the best possible quality using the 
iSkySoft Video Downloader (i.e., 1080p for YouTube 
videos, and 360p for Vimeo videos), and then converted them 
to AVI format using the Any Video Converter. The Optical 
Flow Analyzer (Barbosa et al., 2008) was then used to obtain 
the mean pixel change between frames of the video for an 
area of interest demarcating the speaker’s position in the 
video during most of the lecture (see Figure 1).  The speaker’s 
area of interest was set up to included as much of the space 
in which the speaker was present during the video recording 
as possible, while also avoiding any overlap with the other 
moving parts of the video (i.e., the slides). In most videos, at 
least a part of the speaker was always present within the 
speaker area. However, in some cases, the speaker did step 
out of the defined area of interest. During these occasional 
brief periods the movement data was lost.  

The Flow Analyzer compares the current frame of the 
video with the previous one, and tracks the direction and the 
magnitude of the displacement of each pixel within the 
defined area of interest. Then, it computes the sum of each of 
the pixel vectors and returns a vector reflecting the overall 
pixel change within the selected area. As the camera was kept 
fixed in  the  same  position  during  the  entire  recording, the  

 

 
 

Figure 1: Screenshot of the Optical Flow Analyzer showing 
the placement of the speaker’s area of interest (green square 

at the bottom left).  

 



pixel displacement in the area enclosing the speaker serves as 
a measure of the speaker’s movement. A time series of the 
amount of movement at each frame of the video (25 frames/s) 
was obtained for each one of the 30 speakers. During 
extraction of these data, we also validated this automated 
measure with human observers (Alviar et al., under review), 
showing that the algorithm identifies the presence or absence 
of body movement in agreement with human judges with 
about 93% accuracy. 
 
Detrended Fluctuation Analysis (DFA) DFA (Peng et al., 
1995) is a fractal method that quantifies the statistical self-
similarity of the variability of a signal across different time 
scales. It allows detection of long-range correlations in a 
signal, which indicate long memory processes of a system. 
This is achieved by fitting polynomials of different orders 
(usually first-order) to an integrated time series that has been 
divided up into non-overlapping bins of different sizes 
(increasing by powers of two). The relationship between bin 
size and mean variability of the residuals for each bin size 
determines the scaling exponent that describes the behavior 
of the time series. Specifically, the slope of the line that better 
fits the relation between logged variability and logged bin 
size, is the Hurst exponent (i.e., the scaling exponent). Ihlen 
(2012) and Kelty-Stephen et al. (2013) provide good tutorials 
discussing the mathematical details behind this technique. 

DFA is a highly sensitive analysis to the influence of 
outliers in a time series. For this reason, before running DFA 
on each signal, we logged transformed each time series to 
obtain normally distributed measurements, and to also 
diminish the influence of the outliers on the analysis. To track 
the change of the fractal exponent over time, we slid a 
window across the time series and performed DFA in 
segments of 2048 data points (81.92 s) at a time. We were 
interested in having a time series of 512 Hurst exponents after 
the windowed analysis. This, combined with the differences 
in the length for each of the selected talks, resulted in variable 
step sizes for each speaker. The resulting step sizes ranged 
from 93 to 232 data points (M=159.43; SD=29.76). This 
created  variable  overlap  between  windows as well, with a  

maximum overlap of 95.45% and a minimum of 88.67% 
(M=92.21%; SD=1.4%). A variable overlap was preferred 
over a variable length in the resulting time series, as this made 
it easier to align and compare relative times during talks, such 
being a quarter way, halfway, and three-quarters through a 
talk.  

The window size, and the scales of interest were chosen 
following Ihlen’s (2012) recommendations to get a stable 
estimate of the Hurst exponents. We had non-overlapping 
scales  of  analysis  that  increased in powers of  two,  and  we 
used first order polynomial detrending. We performed the 
DFA analysis using MATLAB, and the time series of fractal 
exponents was saved for each speaker. Two speakers were 
removed from further analysis because of missing values on 
their resulting time series of Hurst exponents. 
 
Surrogate Time Series We created a surrogate version of 
each time series by shuffling the order of their data points. 
The surrogates act as a baseline condition in which the 
temporal dependency of the observed time series is removed. 
This acts as a control condition that allows us to show that 
the structure unveiled by the analysis emerges from the 
temporal dependency of the data and not from possible 
confounding variables (Ihlen & Vereijken, 2010). We ran the 
DFA analysis on the surrogate time series using the same 
parameters that were described before.  

Data Analysis 
All the analysis on this paper were done over the resulting 
time series of Hurst exponents for both the observed data set 
and the shuffled one. We first collected descriptive measures 
of the variation of Hurst exponents for both datasets. Then, to 
find general trends in the variation of the scaling exponent 
across speakers, we scaled the individual time series and 
modeled their patterns of change by fitting polynomials up to 
the fifth order to each one of them. We treated the resulting 
beta coefficients as descriptive measures of the individual 
trends of variation. We aggregated these coefficients and 
performed one sample t-tests to see if the mean beta 
coefficients were significantly different from 0 and, therefore 

 
Figure 2: Example of an observed and surrogate time series for one speaker (left) and histograms showing the distributions of 

fractal exponents for the shuffled and the observed datasets. The surrogates are presented in lighter gray.



indicated common trends across speakers. In this way, for 
example, if most speakers exhibit a linear increase on their 
scaling exponents over time, the positive betas describing the 
increasing slope of the linear trend, will add up to a value 
significantly greater than zero.   

Results 
Figure 2 presents  an  example  of  a  time  series  of  Hurst  
exponents for one speaker and its surrogate (on the left), and 
the histograms summarizing the distribution of Hurst 
exponents across speakers for the observed and the surrogate  
dataset (on the right). Two significant things can be observed 
here: First, there is quite a lot of variation in the scaling 
exponents that better describe the scaling relations in 
performance over time. The Hurst exponents for the observed 
dataset vary widely, fluctuating in a range from 0.71 to 1.36 
(SD=0.091). They also vary more than the Hurst exponents 
describing the scaling relations in the shuffled time series. 
The fractal exponents of the surrogate dataset fluctuate in a 
range from 0.37 to 0.65 (SD=0.038). Second, the scaling 
exponents are radically different for the observed and the 
shuffled time series. Fluctuation in the scaling relationships 
for the observed cognitive performance are centered around 
a mean Hurst exponent of 1.042. This indicates a variation of 
performance distributed strongly around the scaling 
exponents that indicate the existence of 1/f noise (i.e., H~1). 
By their part, fluctuations in scaling exponents for the 
shuffled dataset are centered around a mean Hurst exponent 
of 0.496. In this case, variation is distributed strongly around 
scaling exponents that indicate the existence of uncorrelation, 
or what is the same, white noise scaling relationships (i.e., 
H~0.5).  

As mentioned in the Data Analysis section, we performed 
growth  curve  analysis  and  one  sample  t-tests  to  identify  

regularities in the fluctuation patterns of the fractal exponents 
across speakers. These analyses revealed that only a negative 
quadratic trend systematically described the variation 
patterns across speakers, producing a mean beta coefficient 
that was significantly different from zero (Mean ß = -2.42, t 
= -3.36, p = .002). This suggests that the fractal exponents 
increase towards the middle of the performance and then 
decrease again as the talk comes to an end. The average 
variation across speakers illustrating this trend is depicted in 
Figure 3 (left). The quadratic polynomial is super imposed 
for reference.  

The application of growth curve analysis and one sample t-
tests to the surrogate dataset failed to show significance of 
any of the polynomial trends. The right panel of Figure 3, 
shows the average variation across the surrogate time series. 
The lack of patterns in the surrogate data, suggests that the 
quadratic trend in the observed data is a function of changes 
in the fractal scaling of the cognitive system during the 
delivery of a lecture, as opposed to other mathematical or 
methodological artifacts.  

Discussion and Conclusions 
 
In this study, we aimed to explore the dynamic nature of a 
long, continuous cognitive performance by analyzing 
variation in the fractal structure of movement during 
academic lectures. The fractal analysis revealed scaling 
exponents that indicated a strong attraction of the performing 
cognitive system towards 1/f noise. The distribution of 
exponents found here replicates the distribution found by 
Kello et al. (2008) in the analysis of the intrinsic fluctuations 
of speech energy when a given word is spoken repeatedly for 
an  extended  period  of  time.  The  distribution  of  exponents 
 

 
Figure 3: Overall patters of variation of the fractal exponents over time for both the observed (left) and the surrogate data set 

(right). The quadratic polynomials are superimposed for reference. The light gray shading shows the SE of the mean.    
 



around 1/f noise also aligns with previous studies of cognitive 
measures like reaction times (Van Orden et al., 2003), 
conversational speech interactions (Abney, Kello, & 
Warlaumont, 2015), card sorting (Anastas et al., 2012), 
aiming (Wijnants et al., 2009), and even self-esteem 
measures (Delignières, Fortes, & Ninot, 2004). This 
attraction towards pink noise has been argued to be 
characteristic of self-organized, soft-assembled, interaction-
dominant systems, whose behavior emerges from the 
interaction of simple units (Van Orden et al., 2003). It is 
thought to indicate states of self-organized criticality that 
favor both stability and adaptation and facilitate information 
transmission across the system (Van Orden, et al., 2011). 
Within this framework, it makes sense for the trajectory of 
fractal exponents of the performing cognitive systems 
analyzed here, to constantly hover around 1/f noise. This 
attraction towards pink noise, would allow the cognitive 
system enough stability to sustain performance, and enough 
flexibility to restructure and adapt to the changing demands 
of that performance over time.  

In fact, although the resulting scaling exponents are 
centered around pink noise, they do vary quite widely across 
performance. This variation in scaling exponents is in line 
with findings coming from the literature exploring the 
multifractality of cognition (Ihlen & Vereijken, 2010). From 
this point of view, the multiplicity of fractal exponents 
necessary to describe a behavioral signal would reflect 
transitions of the system to new structures. The spectrum of 
exponents would vary widely to reflect scaling structures at 
both moments in which the system opens up to explore new 
patterns of organization, and in which it settles back down 
into new structural configurations that better adapt to the 
ever-changing demands of the environment (Stephen et al., 
2009). In future investigations of these results, it would be 
interesting to go back to the specific of the presentations and 
explore if rapid changes in fractal exponents tend to happen 
in synchrony with changes in the environmental or task 
constrains. For example, it would be interesting to see if dips 
in the fractal exponent, like the one we see around the 50th 
time window (~5.3 minutes), correspond to dramatic changes 
in the topic, or the end of the most rehearsed part of the talk 
and the introduction of more complex or less established 
information for which the cognitive system needs to create 
new structures.  

 The analysis of variation across speakers revealed an 
inverted U-shaped pattern for the trajectory of fractal 
exponents over time. This pattern of Hurst exponents 
indicates that the system goes from a state of more 
randomness and less memory in its behavior, to a state of 
more rigidity and determination in which the small variations 
in behavior carry and reflect the history of the system more 
strongly at each time step. This suggests, at a dynamic level, 
the emergence of structures that constrain the behavior of the 
individual components of the system making the behavior of 
the system less variable and less flexible over time (Kloos & 
Van Orden, 2010). Towards the end of the performance, the 
system, finally returns to a less rigid, more adaptable state as 

the structures dissipate when finishing the task. In more 
simple words, speakers go from relatively less structured 
dynamics at the beginning of their talks, to more structured 
dynamics during the middle, and then back to less structured 
dynamics as their talks come to an end. This trend stands out 
in a nice parallel to the common organization of a talk: as we 
begin, we present our problem and set up for our 
performance, then, we get into a “groove” as we present our 
main argument, and then, we wrap up and finish by 
concluding with the last details of our narration. The 
cognitive performance of giving a lecture follows this same 
general trend of organization: setting up structure, 
maintaining structure, and coming out of structure. This 
pattern also mirrors the inverted U progression of scaling 
exponents found by Anastas et al. (2012) in their study of 
executive function, as well as the one found by Stephen et al. 
(2009) in their study of mathematical discovery. There are 
many substantial differences between the performances of 
card sorting versus giving a talk, most notably their lengths 
and degrees of heterogeneity, but all performances can be 
said to have a beginning, middle, and end. It makes sense that 
beginnings and endings may be symmetric like bookends, 
with the middle being different. 

It is important to mention an unfortunate limitation of our 
study that is necessary to have in mind when interpreting the 
results presented here. Unintentionally, our sample includes 
a much higher number of men than women. This is probably 
a reflection of larger trends in science and academia (Ceci, 
Williams, & Thompson, 2011), and makes the results and 
analysis limited in their potential to be generalized to 
women’s presentation styles. It is an open and interesting 
question if a more balanced sample would yield different 
conclusions. Future work should correct for the unintentional 
bias in our dataset. 

As next steps from the present work, it would be interesting 
to test if this pattern shows up when measuring fractal change 
in the other modalities involved in communication. Would 
our speech be structured in a similar way than our body 
movement is? Would the informational flow during a talk as 
measured by the complexity of the language being used 
follow a similar trend? Also, as mentioned before, exploring 
specific aspects of the environment or the task during rapid 
changes of fractal scaling at the individual level, might be 
interesting to discover the types of changes that trigger 
reorganizations of the cognitive system during performance. 
As a third avenue for future exploration, obtaining 
information about the expertise of the presenter and 
collecting performance measures (e.g., learning outcomes of 
the audience, or overall interest or enjoyment of the 
presentation) and relating them to patterns of fractal 
variability might shed light on the organizational patterns that 
are behind successful presentations. Answering all of these 
questions might give us additional insights in the mechanisms 
that make sustained multimodal cognition possible. 



Conclusions 
In this paper, we show how fractal methods and dynamical 

systems accounts of the mind can be of service to study 
interesting questions about the continuity and organization of 
cognitive performance. We show that fluctuations of fractal 
scaling during continuous performance in a communicative 
task, although highly variable exhibit a heavy attraction 
towards 1/f noise. We also find that sustained performance 
during a talk shows a trajectory of fractal scaling that follows 
the traditional idea of a presentation as having a beginning or 
an introduction, a middle or main argument, and end or 
conclusion. 
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