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Abstract 

Some recent theories of language see it as a complex and highly adaptive system, adjusting to factors at 
various time scales.  For example, at a longer time scale, language may adapt to certain social or 
demographic variables of a linguistic community. At a shorter time scale, patterns of language use may be 
adjusted by social structures in real-time. Until recently, datasets large enough to test how socio-cultural 
properties— spanning vast amounts of time and space— influence language change have been difficult to 
obtain. The emergence of digital computing and storage have brought about an unprecedented ability to 
collect and classify massive amounts of data. By harnessing the power of big data we can explore what 
socio-cultural properties influence language use.  This chapter explores how social-network structures, in 
general, contribute to differences in language use. We analyzed over one million online business reviews 
using network analyses and information theory to quantify social connectivity and language use.  Results 
indicate that perhaps a surprising proportion of variance in individual language use can be accounted for 
by subtle differences in social-network structures, even after fairly aggressive covariates have been added 
to regression models. The benefits of utilizing big data as a tool for testing classic theories in cognitive 
science and as a method toward guiding future research are discussed.  
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Introduction  

Language is a complex behavioral repertoire in a cognitively advanced species.  The sounds, words, and 
syntactic patterns of language vary quite widely across human groups, who have developed different 
linguistic patterns over a long stretch of time and physical separation (Sapir, 1921). Explanations for this 
variation derive from two very different traditions. In the first, many language scientists have sought to 
abstract away from this observed variability to discern core characteristics of language which are 
universal and perhaps genetically fixed across people (from Chomsky, 1957 to Hauser, Chomsky, & Fitch, 
2001). The second tradition sees variability as the mark of an intrinsically adaptive system. For example, 
Beckner and colleagues (2009) argue that language should be treated as responsive to socio-cultural 
change in real time. Instead of abstracting away apparently superficial variability in languages, this 
variability may be an echo of pervasive adaptation, from subtle modulation of real-time language use, to 
substantial linguistic change over longer stretches of time. This second tradition places language in the 
broader sphere of human behavior and cultural products in a time when environmental constraints have 
well known effects on many aspects of human behavior (see Triandis, 1994 for review).  1

 Given these explanatory tendencies, theorists of language can have starkly divergent ideas of it. 
An important next step in theoretical mitigation will be new tools and broad data samples so that, perhaps 
at last, analyses can match theory in extent and significance. Before the arrival of modern information 
technologies, a sufficient linguistic corpus would have taken years, if not an entire lifetime, to acquire. 
Indeed, some projects on the topic of linguistic diversity have this property of impressive timescale and 
rigor. Some examples include the Philadelphia Neighborhood Corpus, compiled by William Labov in the 
early 1970s, the Ethnologue, first compiled by Richard Pittman dating back to the early 1950’s and the 
World Atlas of Language Structures (WALS), a collection of data and research from 55 authors on 
language structures available online, only six years ago (in 2008).  Digitally stored language, and to a 
great extent accessible for analysis, has begun to exceed several exabytes, generated everyday online 
(Kubyba & Kwatinetz, 2014).  One way this profound new capability can be harnessed is by recasting 2

current theoretical foundations, generalized from earlier small-scale laboratory studies, into a big-data 
framework. 

If language is pervasively adaptive, and is thus shaped by socio-cultural constraints, then this 
influence must be acting somehow in the present day, in real-time language use. Broader linguistic 
diversity and its socio-cultural factors reflect a culmination of many smaller, local changes in the 
incremental choices of language users.  These local changes would likely be quite small, and not easily 
discerned by simple observation, and certainly not without massive amounts of data. In this chapter, we 
use a large source of language data, Yelp, Inc. business reviews, to test whether social-network structures 
relate in systematic ways to the language used in these reviews. We frame social-network variables in 
terms of well-known network measures, such as centrality and transitivity (Bullmore & Sporns, 2009), 
and relate these measures to language measures derived from information theory, such as information 
density and uniformity (Aylett, 1999; Jaeger, 2010; Levy & Jaeger, 2007). In general, we find subtle but 
detectable relationships between these two groups of variables. In what follows, we first motivate the 
broad theoretical framing of our big-data question: What shapes linguistic diversity and language change 
in the broad historical context? Following this we describe information theory and its use in quantifying 
language use. Then, we explain how social structure may influence language structure. We consider this a 

 This description involves some convenient simplification. Some abstract and genetic notions of language also 1

embrace ideas of adaptation (Pinker & Bloom, 1990), and other sources of theoretical subtlety render our description 
of the two traditions an admittedly expository approximation. However, the distinction between these traditions is 
stark enough to warrant the approximation: The adaptive approach sees all levels of language as adaptive across 
multiple time scales, whereas more fixed, abstract notions of language see it as only adaptive in a restricted range of 
linguistic characteristics.

 Massive online sites capable of collecting terabytes of metadata per day have only emerged in the last 10 years: 2

Google started in 1998; Myspace 2003; Facebook, 2004; Yelp 2004; Google+ 2011. Volume, velocity and variety of 
incoming data are thought to be the biggest challenges toward understanding big-data today (McAfee, Brynjolfsson 
& Davenport, 2012). 

UNCORRECTED PROOF



first step in understanding how theories in cognitive and computational social science can be used to 
harness the power of big data in important and meaningful ways (see Griffiths, 2015).  

What shapes language? 

As described above, language can be cast as a highly adaptive behavioral property. If so, we would 
probably look to social, cultural or even ecological aspects of the environment to understand how it 
changes (Nettle, 1998; Nichols, 1992; Trudgill, 1989, 2011). Many studies, most over the past decade, 
suggest languages are dynamically constrained by a diverse range of environmental factors. Differences 
in the spread and density of language use (Lupyan & Dale, 2010), the ability of its users (Bentz, et al., 
submitted; Christiansen & Chater, 2008; Dale & Lupyan, 2012; Ramscar, 2013; Wray & Grace, 2007) and 
its physical environment (Nettle, 1998; Everett, 2013) impact how a language is shaped online (Labov, 
1972ab) and over time (Nowak, Komarova & Niyogi, 2002). These factors determine whether certain 
aspects of a language will persist or die (Abrams & Strogatz, 2003), simplify or remain complex 
(Lieberman et al., 2007). Language change is also rapid, accelerating at a rate closer to that of the spread 
of agriculture (Gray & Atkinson, 2003; cf. Chater, Reali & Christiansen, 2008) than genetics. Using data 
recently made available from WALS and a recent version of the Ethnologue (Gordon, 2005), Lupyan and 
Dale (2010) found larger populations of speakers, spread over a wider geographical space, use less 
inflection and more lexical devices. This difference may be due to differences in communicating within 
smaller, “esoteric” niches and larger, “exoteric” niches (also see Wray & Grace, 2007), such as the ability 
of its speakers (Bentz & Winter, 2012; Lupyan & Dale, 2010; Dale & Lupyan, 2012) or one’s exposure to 
a growing vocabulary (Reali, Chater & Christiansen, 2014).  

Further evidence of socio-cultural effects may be present in real-time language usage. This is a 
goal of the current chapter — can we detect these population-level effects in a large database of language 
use? Before describing our study, we describe two key motivations of our proposed analyses: The useful 
application of (1) information theory in quantifying language use and (2) network theory in quantifying 
social structure.  

Information and adaptation 

Information theory (Shannon, 1948) defines the second-order information of a word as the negative log 
probability of a word occurring after some other word: 

!  

The theory of uniform information density (UID; Levy & Jaeger 2007; Jaeger, 2010) states that speakers 
will aim to present the highest amount of information across a message at a uniform rate, so as to 
efficiently communicate the most content without violating a comprehender’s channel capacity. Support 
for this theory comes from Aylett (1999), in an early expression of this account, who found that speech is 
slower when a message is informationally dense and Jaeger (2010), who found information-dense 
messages are more susceptible to optional word injections, diluting its overall density over time. Indeed, 
even word length may be adapted for its informational qualities (Piantadosi, Tily & Gibson, 2011).  

In a recent paper, we investigated how a simple contextual influence, the intended valence of a 
message, influences information density and uniformity. While it is obvious that positive and negative 
emotions influence what words individuals use (see Vinson & Dale, 2014a for review), it is less obvious 
that the probability structure of language use is also influenced by one’s intentions. Using a corpus of over 
two-hundred thousand online customer business reviews from Yelp, Inc., findings suggest that the 
information density of a message increases as the valence of that message becomes more extreme 
(positive or negative). It also becomes more uniform (less variable) as message valence becomes more 
positive (Vinson & Dale, 2014b). The results are commensurate with theories that suggest language use 
adapts to a variety of socio-cultural factors in real time.  

In this chapter, we look to information-theoretic measures of these kinds to quantify aspects of 
language use, with the expectation that they will also relate in interesting ways to social structure. 

I(wi) = �log2p(wi|wi�1)
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Social network structure 

Another key motivation of our proposed analyses involves the use of network theory to quantify the 
intricate structural properties that connect a community of speakers (Christakis & Fowler, 2009; Lazer, et 
al., 2009). Understanding how specific socio-cultural properties influence language can provide insight 
into the behavior of the language user herself (Baronchelli, et al., 2013). For instance, Kramer, Guilliory 
and Hancock (2014) having analyzed over six hundred thousand Facebook users, reported when a user’s 
newsfeed was manipulated to show only those posts that were either positive or negative, a reader’s own 
posts aligned with the emotional valence of their friends’ messages. Understanding what a language looks 
like when under certain socio-cultural pressures can provide valuable insight into what societal pressures 
that help shape a language.  Indeed, global changes to one’s socio-cultural context, such as changes in the 
classification of severity of crime and punishment over time, are marked by linguistic change 
(Klingenstien, Hitchcock & Dedeo, 2014) while differences in the distance between socio-cultural niches 
is marked by differences in language use (Vilhena, et al., 2014).   

Current study 

In the current study, we utilize the Yelp database as an arena to test how population-level differences 
might relate to language use. While previous work suggests online business reviews may provide insight 
into the psychological states of its individual reviewers (Jurafsky, Chahuneau, Routledge, & Smith, 2014), 
we expect that structural differences in one’s social community as a whole, where language is crucial to 
conveying ideas, will affect language use.  We focus on how a language user’s social niche influences the 
amount and rate of information transferred across a message. Agent-based simulations (Chater, Reali & 
Christiansen, 2006; Dale & Luypan, 2012; Reali, Chater & Christiansen, 2014) and recent studies on the 
influences of interaction in social networks (Bond et al., 2012; Choi et al., 2014) indicate that the 
structure of language use may be influenced by structural aspects of a language user’s social interactions. 
From an exploratory standpoint, we aim to determine if one’s social-network structure predicts the 
probability structure of language use. 

Method 
Corpus 

We used the Yelp Challenge Dataset (http://www.yelp.com/dataset_challenge) which, at the time of this 
analysis, contained reviews from businesses in Phoenix, Las Vegas, Madison, and Edinburgh. This 
includes 1,125,458 reviews from 252,898 users who reviewed businesses in these cities. The field entries 
for reviews included almost all the information that is supplied on the Yelp website itself, including the 
content of the review, whether the review was useful or funny, the star rating that was conferred upon the 
business, and so on. It omits a user’s public username, but includes an array of other useful information, 
in particular a list of user ID codes that point to friends of a given user. Yelp users are free to ask any 
other Yelp user to be their friend. Friendship connections are driven by users’ mutual agreement to 
become friends. These user ID codes allow us to iteratively build social networks by randomly choosing a 
user, and expanding the network by connecting friends and friends of friends, which we further detail 
below.  

Linguistic measures  

The first and simplest measure we explore in our analysis is the number of words in a given review, its 
word length. This surface measure is used as a basic but important covariate for regression analyses.  
Word length will define the bin count for entropy and other information analyses, and so directly impacts 
these measures.  
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The second measure we use is the reviewer-internal entropy (RI-Ent) of a reviewer’s word use. 
This marks the discrete Shannon entropy of a reviewer’s overall word distribution. If reviewers use many 
different words, entropy would be high. If a reviewer reuses a smaller subset of words, the entropy of 
word distribution would be low, as this would represent a less uniform distribution over word types.  

A third measure is the average information encoded in the reviewer’s word use, which we’ll call 
average unigram information (AUI). Information, as described above, is a measure of the number of bits 
a word encodes given its frequency in the overall corpus. Reviews with higher information use less 
frequent words, thus offering more specific and less common verbiage in describing a business. 

A fourth measure is one more commonly used in studies of informational structure of language, 
which we’ll call the average conditional information (ACI). This is a bit-based measure of a word based 
on its probability conditioned on the prior word in the text. In other words, it is a measure of the bits 
encoded in a given bigram of the text. We compute the average bits across bigrams of a review, which 
reflect the uniqueness in word combinations .  3

Finally, we extract two crude measures of information variability by calculating the standard 
deviation over AUI and ACI, which we call unigram informational variability (UIV) and conditional 
informational variability (CIV) respectively. Both measures are a reflection of how stable the distribution 
is over a reviewer’s average unigram and bigram bit values. These measures relate directly to uniform 
information density (see Levy & Jaeger, 2007; Jaeger 2010). A very uniform distribution of information is 
represented by a stable mean and lower UIV/CIV; a review with unigram or bigram combinations that 
span a wide range of informativeness induces a wider range of bit values, and thus a higher UIV/CIV 
(less uniform density). A summary of these measures appears in Table 1.  Punctuation, stop words and 
spacing were removed using the tm package in R before information-theoretic measures were obtained.  4

 Previous research calls this Information Density and uses this as a measure of Uniform Information Density.  We 3

use the name Average Conditional Information given the breadth of information-theoretic measures used in this 
study.

 Note: AUI and ACI were calculated by taking only the unique n-grams.4

Table 1: Summary of information theoretic measures quantifying language in reviews

Measure Description Definition

RI-Ent reviewer-internal entropy

AUI average unigram information

ACI average conditional information

UIV unigram informational variability

CIV conditional informational variability

�UIVj = �(UIj)

�
AUIj = � 1

N

NX

i=1

log2p(wi)

�CIVj = �(CIj)

�
ACIj = � 1

N � 1

NX

i=1

log2p(wi|wi�1)

�
RI-Entj = �

NX

i=1

p(wi|Rj)log2p(wi|Rj)

Notes: N = number of words in a review; p(w) = probability of word w; wi = ith word of a review; UIj = set of 
unigram information scores for each word of a given review; CIj = set of conditional information scores for each 
word of a given review.
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Social networks 

One benefit of the big-data approach we take in this chapter is that we can pose our questions about 
language and social structure using the targeted unit of analysis of social networks themselves. In other 
words, we can sample networks from the Yelp dataset directly, with each network exhibiting network 
scores that reflect a certain aspect of local social structure. We can then explore relationships between the 
information-theoretic measures and these social-network scores. 

We sampled 962 unique social networks from the Yelp dataset, which amounted to approximately 
38,000 unique users and 450,000 unique reviews. Users represent nodes in social networks and were 
selected using a selection and connection algorithm also shown in Fig. 1. We start by choosing a random 
user who has between 11 and 20 friends in the data set (we chose this range to obtain networks which 
were not too small or too large as to be computationally cumbersome). After we chose that user, we 
connected all her friends and then expanded the social network by one degree; randomly selecting 10 of 
the her friends and connecting up to 10 of her friend’s friends to the network.  We then interconnected all 
users in this set (shown as the first-degree nodes and connections in Fig. 1). We conducted this same 
process of finding friends of these first-degree nodes, and then interconnected those new nodes of the 
second degree. In order to make sure networks did not become too large, we randomly sampled up to 10 
friends of each node only. 50% of all networks fell between 89-108 reviewers in size, and the resulting 
nets reveal a relatively normal distribution of network metrics described in the next section. 

Network measures 

A variety of different network measures were used to quantify the structure of each network.  We consider 
two different categories of network structures: simple and complex.  A summary of all seven (2 simple, 5 
complex) network measures appears in Table 2.  We used two simple network measures: The number of 
reviewers in a network, or nodes, and the number of friendship connections between reviewers, or edges. 
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sections:!!
social networks as units of selection; leveraging big data; over 70,000 users in this dataset!
use to define 1,000 nets… describe process… thus we quantify properties of “local nets,”!
interms of their clustering, connectedness, etc.
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Figure 1: “0”-degree was chosen at random among those with between 11 and 20 friends. We then connected 
these individuals.  Then, from 10 randomly chosen friends of the seed node, we chose up to 10 friends of 
friends and connected them. Following this, we interconnected the whole set. Note that this is a simplified 
visualization of the process, as friends and friends of friends were chosen up to a count of 10, which 
produces much  larger networks (visualized in examples below).
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We considered five complex network measures.  The first measure, network degree, is the ratio of 
edges to nodes.  This provides a measure of connectivity across a network.  High-degree networks have a 
higher edge-to-node ratio than lower degree networks. 

The second measure, network transitivity, determines the probability that two adjacent nodes are 
themselves connected (sometimes termed the “clustering coefficient”).  Groups of three nodes, or triples, 
can either be closed (e.g., fully connected) or open (e.g., two of the three nodes are not connected).  The 
ratio of closed triples to total triples provides a measure of the probability that adjacent nodes are 
themselves connected. High transitivity occurs when the ratio of closed-to-open triples is close to one.  

A third measure, network betweenness, determines the average number of shortest paths in a 
network that pass through some other node. The shortest path of two nodes is the one that connects both 
nodes with the fewest edges. A pair of nodes can have many shortest paths. A node’s betweenness value is  
the sum of the ratio of a pair of node’s shortest paths that pass through the node, over the total number of 
shortest paths in the network. We determined network betweenness by taking the average node 
betweenness for all nodes in the network. Effectively, this provides a measure of network efficiency. The 
higher a network’s betweenness, the faster some bit of new information can travel throughout the 
network. 

Table 2: Summary of the measures quantifying a network’s structure

Measure Definition Discription

Nodes Nodes Number of individuals in the network 

Edges Edges
Number of node to node connections; vertices in 
a network

Degrees
The ratio of connections to nodes in a network

Transitivity / 
Clustering 
Coefficient

The average number of completely connected 
triples given the total number of triples in a 
network. 

Betweenness

SPst is the number of total shortest paths from 
node s to node t. SPst(V) is the number of shortest 
paths from s to t that pass through node V. The 
sum for all shortest paths for all nodes 
determines the betweenness of node V. We take 
the average betweenness of each node for all 
nodes N in a network. 

Centrality

Cx is the graph level centrality defined as the sum 
of the absolute difference between the observed 
maximum central node Cx(n*)  and all other node 
centrality measures Cx(ni) over the theoretical 
maximum centrality of a network with the same 
number of nodes. Since, this is a measure of the 
maximum possible centrality and actual 
centrality, graph level centrality will always fall 
between 0 (low centrality) and 1 (high 
centrality). 

Scale Free

α is the exponent characterizing the power law fit 
predicted by the degree distribution 𝓍. α is 
always greater than 1 and typically falls within 
the range of 2 < α < 3, but not always. 
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A fourth measure stems from node centrality which determines the number of connections a 
single node has with other nodes.  Centrality can also be determined for the whole network, known as 
graph centrality.  Graph centrality is the ratio of the sum of the absolute value of the centrality of each 
node, over the maximum possible centrality of each node (Freeman, 1979).  Node centrality is greatest 
when a single node is connected to all other nodes, whereas graph centrality is greatest when all nodes are 
connected to all other nodes. Information is thought to travel faster in high-centrality networks.  Here we 
use graph centrality only.  From this point on we will refer to to graph centrality simply as centrality.  
Network betweenness and network centrality share common theoretical assumptions, but quantify 
different structural properties of a network.  

Our fifth and final measure determines whether the connections between nodes in a network share 
connectivity at both local and global scales.  Scale free networks display connectivity at all scales, local 
and global, simultaneously (Dodds et al., 2003).  A network is scale free when its degree distribution (i.e., 
the number of edge connections per each node) fits a power law distribution.  Networks that are less scale 
free are typically dominated by either a local (a tightly connected set of nodes) or global connectivity 
(randomly connected nodes).  Networks that exemplify differences in complex structures are presented in 
Fig. 2. 

Additional measures 

Individual reviews were not quantified independently.  Instead, all reviews from a single individual were 
concatenated into one document.  This allowed for information-theoretic measures to be performed over a 
single user’s total set of reviews.  The average information of a network was then computed by taking the 

Figure 2: Example Yelp networks with high/low structural properties

Low Degree High Degree Low Transitivity High Transitivity

Low Betweenness High Betweenness Low Centrality High Centrality

Low Scale Free High Scale Free
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average across all individuals (nodes) in the network. Such an analysis affords testing how the structure of 
an individual’s social network impacts that individual’s overall language use.  However, due to the nature 
of how our information-theoretic measures were determined, individuals who wrote well over one 
hundred reviews were treated the same as those who wrote merely one. This introduces a possible bias 
since information measures are typically underestimated when using non-infinite sample sizes (as in the 
case of our information measures).  While we control for certain measures such as the average reviewer’s 
total review length and network size, additional biases may occur due to the nature of how each measure 
was determined (e.g., averaging across reviewers with unequal length reviews).  To address these 
concerns two additional measures, (1) a gini coefficient and (2) a random review baseline— to assess the 
reliability of our analyses—were used. They are described below.   
 Gini coefficient.  The Gini coefficient (range = [0,1]) was originally developed to assess the 
distribution of wealth across a nation.  As the coefficient approaches zero, wealth is thought to approach 
greater equality. As the coefficient approaches one, more of the nation’s wealth is thought to be shared 
amongst only a handful of its residents.  We use the Gini coefficient to assess the distribution of reviews 
across a network. Since each node’s reviews were concatenated, given only one value for each 
information-theoretic measure, certain reviewer’s measures will be more representative of the linguistic 
distributions.  The Gini coefficient provides an additional test as to whether a network’s average 
information is influenced by the network's distribution of reviews.  
 Random review baseline. A random network baseline provides a baseline value to compare 
coefficient values from true networks.  Baseline information measures were computed by randomly 
sampling (without replacement) the same number of reviews written by each reviewer.  For example, if a 
reviewer writes five reviews, then five random reviews are selected to take their place.  These five 
reviews are then deleted from the pool of total reviews used throughout all networks.  This ensures that 
the exact same reviews are used in baseline reviews. We did not go so far as to scramble tokens within 
reviews.  While this would provide a sufficient baseline, obtaining the true information-theoretic 
measures of each review, without token substitution, provides a more conservative measure.  The random 
review baseline was used to compare all significant true network effects as an additional measure of 
reliability. 

Broad expectations and some predictions 

This chapter presents a broad thesis, and we test it using the Yelp data: Social-network structure will 
relate in interesting ways to patterns of language use. Though this is a broad expectation, it is not a 
specific prediction, and we do not wish to take a strong stance on specific hypotheses here, giving the 
reader the impression that we had conceived, in advance, the diverse pattern of results that we present 
below. Instead, big data is providing rich territory for new exploration. The benefit of a big-data approach 
is to identify interesting and promising new patterns or relationships and, we hope, encourage further 
exploration. As we show below, even after controlling for a variety of collinearities among these 
measures, the broad thesis holds. Regression models strongly relate social-network and information-
theoretic measures. Some of the models show proportion variance accounted for at above 50%. Despite 
this broad exploratory strategy, a number of potential predictions naturally pop out of existing discussion 
of information transmission in networks. We consider three of these here before moving into the results. 

One possibility is that more scale-free networks enhance information transmission, and thus 
would concomitantly increase channel capacity of nodes in the network. One might suppose that in the 
Yelp context, a more local scale-free structure might have a similar effect: An efficient spread of 
information may be indicated by a wide diversity of information measures, as expressed in the UIV and 
CIV measures.  

A second prediction—not mutually exclusive from the first—draws from the work on conceptual 
entrainment and imitation in psycholinguistics, is that densely connected nets may induce the least AUI. If 
nodes in a tightly connected network infect each other with common vocabulary, then this would reduce 
the local information content of these words, rendering them less unique and thus show the lowest 
entropy, AUI, and so on. One may expect something similar for transitivity, which would reflect the 
intensity of local mutual interconnections (closed triples). 
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However, the reverse is also possible. If language users are more densely connected it may be 
more likely that they have established a richer common ground overall. If so, language use may contain 
more information-dense words specific to a shared context (Doyle & Frank, submitted).  A fourth 
prediction is that more network connectivity over a smaller group (higher-network degree) may afford 
more complex language use, and so lead to higher AUI and ACI. 

A final prediction comes from the use of information theory to measure the rate of information 
transmission.  When a speaker’s message is more information-dense, it is more likely that it will also be 
more uniform. Previous findings show speakers increase their speech rate when presenting low 
information-dense messages, but slow their speech rate for information-dense messages (Pellegrino, 
Coupé, & Marisco, 2011). It may be that any social structure that leads to increases in information density 
simultaneously decreases information variability. 

Results  

Simple measures  

The confidence intervals (99.9% CI) of five multiple regression models, where nodes, edges and the Gini 
coefficient were used to predict each information-theoretic measure, are presented in Table 3.  We set a 
conservative criterion for significance (p < .001) for all analyses. Only those analyses that were 
significant are presented. Crucially, all significant effects of independent variables were individually 
compared to their effects on the random review baseline.  To do this, we treated the random review 
baseline and true network reviews as two levels of the same variable: “true_baseline”. Using linear 
regression we added an interaction term between independent network variables and the true_baseline 
variable.  A significant interaction is demarcated by “☨” in tables 3 and 4.   The effects of these network 

Nodes Edges Gini coef F-statistic

Length n.s. (.09, .27) (.30 , .43) F(3,958) = 125 
R2= .28, R2adj = .28

RI-Entresidual n.s. (.10, .15)☨ (-.16, -.12)☨ F(3,958) = 446.6 
R2= .58, R2adj = .58

AUIresidual (-.05, -.01)☨ (.10, .12)☨ (-.12, -.09)☨ F(3,958) = 391 
R2= .55, R2adj = .55

ACIresidual n.s. (.07, .12)☨ (-.04, -.01) F(3,958) = 154.1 
R2= .33, R2adj = .32

UIVresidual (-.01, -.001) (.001, .01)☨ (004 , .01) F(3,958) = 39.58 
R2= .11, R2adj = .11

CIVresidual n.s. (-.003, 0) (.002, .004) F(3,958) = 27.99 
R2= .08, R2adj = .08

Table 3: Lexical measures as predicted by nodes, edges and Gini coefficient

Note: Only the  Mean and 99.9% Confidence Intervals for each IV with p<.001 are presented. 
The “☨” symbol denotes all network effects that were significantly different from baseline  
network effects (p<.001).   Multiple linear regressions were performed in R: lm(DV~Nodes
+Edges+Gini). 
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variables on information-theoretic measures are significantly different in true networks compared to 
baseline networks.  This helps to ensure that our findings are not simply an artifact of our methodology.  
 All variables were standardized (scaled and shifted to have M = 0 and SD = 1).  Additionally, the 
number of words (length) was log transformed due to a heavy-tailed distribution. All other variables were 
normally distributed. Because length correlates with all information-theoretic measures and UIV and CIV 
correlate with the mean of AUI and ACI, respectively (due to the presence of a true zero), the mean of 
each information measure was first predicted by length while UIV and CIV were also predicted by AUI 
and ACI.  The residual variability of these linear regression models was then predicted by nodes, edges 
and the Gini coefficient.  The purpose of residualization is to further ensure that observed interactions are 
not due to trivial collinearity between simpler variables (length, nodes) and ones that may be subtler and 
more interesting (CIV, centrality, etc.).   5

The number of nodes provides a crude measure of network size, edges, network density and the 
Gini coefficient (the distribution of reviews across the network).  Importantly, no correlation exists 
between the Gini coefficient with either edges or nodes. And, although a strong correlation exists between 
nodes and edges (r = .67, t(960) = 28.23, p < .0001), in only two instances, AUI and UIV, did nodes 
account for some portion of variance. As nodes increased, average unigram information, along with 
average unigram variability, decreased. However, only the relationship between nodes and average 
unigram information was significantly different between the true network and the random review 
baseline.  In all cases, save conditional information variability (CIV), a significant proportion of variance 
in information measures was accounted for by edges, and in all but length and CIV, the relationship 
between information measures and edges was significantly different between the true network and the 
random review baseline (Figure 3a presents an example interaction plot between ACI, edges and 
true_baseline measures).  Finally, the Gini coefficient accounted for a significant portion of variance for 
all information measures, but only for RI-Ent and AUI did it have a significantly different relationship 
between the true network and the random review baseline. One explanation may be that more unique 
language use may naturally occur when more individuals contribute more evenly to the conversation.  
Another possibility is that networks with less even review distributions are more likely to have more 
reviews, suggesting that a larger number of reviewer’s language use is more representative of the overall 

 Our approach toward controlling for collinearity by residualizing variables follows that of previous work (Jaeger, 5

2010).  However, it is important to note the process of residualizing to control for collinearity is currently in debate 
(see Wurm & Fisicaro, 2014 for review). It is our understanding that the current stringent use of this method is 
warranted provided it stands as a first pass toward understanding how language use is influenced by network 
structures.  

Figure 3. Network Measures for True and Baseline networks by Across Conditional 
Information-Density. All four plots show significant interactions for variables in True networks 
compared to baseline networks. Linear regression models with interaction terms were used in 
R:lm(DV~IV+true_baseline+IV*true_baseline)
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linguistic distribution of reviews.  A simple linear regression analysis reveals the Gini coefficient accounts 
for a significant portion of variance in the total number of reviews in each network (R2adj = .21, F[1,960] 
= 249.6, p < .001, 99.9% CI [.25, .38]), increasing as the number of reviews increase. 

We interpret these results cautiously considering it is a first step toward understanding what 
aspects of a network relate to language use.  The results suggest changes in population size and 
connectivity occur alongside changes in the structure of language use. Speculatively, the individual 
language user may be influenced by the size and connectivity of her network.  When the size of her 
network increases, the words she uses may be more frequent.  However when connectivity increases, the 
words she uses may be of low frequency, and therefore more information dense.  This supports current 
work that shows how a shared common ground may lead to an increase in information dense word use 
(Doyle & Frank, submitted). This is further explored in the discussion.  

Though we find significant effects, how network size and connectivity influence information 
density and channel capacity, and how different ways of interpreting information (as we have done here) 
interact with simple network measures is unclear.  Generally, these results suggest that word choice may 
relate to social-network parameters. 

Complex measures   

The complex network measures, centrality, degree and scale free, were log transformed for all analyses 
due to heavy-tailed distributions. Given the larger number of network variables and their use of similar 
network properties such as number of nodes or edges, it is possible that some complex network measures 
will be correlated. To avoid any variance inflation that may occur while using multiple predictors, we 
determined what variables were collinear using a variance inflation factor (vif) function in R. We first 
used nodes and edges to predict the variance of each complex network measure.  We factor this out by 
taking the residual of each model and then used the vif  function from the R  library car  to determine 
what complex network measures exhibited collinearity.  Using a conservative VIF threshold of 5 or less 

(see Craney & Surls, 2002; Stines, 1995 for review) we determined that no complex network measures 

Table 4: Information-theoretic measures predicted by complex network measures

Note: Only the  Mean and 99.9% Confidence Intervals for each IV with p<.001 are presented. All reported values 
were significant (p < .001). The “☨” symbol denotes all network effects significantly different from baseline 
network effects.

Degree Transitivity Betweenness Centrality Scale Free: α F-statistic

Length n.s. (.20, .42) (-.28, -.08) (.01, .16) n.s. F(5,956) = 33.3  
R2= .15, R2adj = .14

RI-Entresidual (.04, .13)☨ (-.11, -.03) n.s. n.s. n.s. F(5,956) = 21.47  
R2= .10, R2adj = .10

AUIresidual (.02, .09)☨ n.s. n.s. (.004, .05)☨ n.s. F(5,956) = 10.36  
R2= .05, R2adj = .05

ACIresidual (.01, .07)☨ (-.07, -.01)☨ n.s. n.s. n.s. F(5,956) = 11.38  
R2= .06, R2adj = .05

UIVresidual n.s. n.s. n.s. n.s. n.s. n.s

CIVresidual n.s. n.s. n.s. n.s. n.s. n.s.
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used in our model was at risk of any collinearity that would have seriously inflated the variance .  All VIF 6

scores were under the conservative threshold for all complex network variables and are therefore not 
reported.  Residuals of complex network measures, having factored out any variance accounted for by 
nodes and edges, were used to predict each information-theoretic measure presented in Table 4. 

One or more complex measures accounted for a significant proportion of variance in each 
information density measure.  Certain trends are readily observed across these models.  Specifically, word 
length increased as network transitivity and centrality increased and decreased as network betweenness 
increased, however no network measure effects were significantly different from random review baseline 
effects (significance marked by the “☨” symbol in Table 4).  Additionally, RI-Ent and AUI and ACI 
increased as network degree increased accounting for ~5-10% of the variance in each measure. The 
relationship between network degree and corresponding information measures in true networks was 
significantly different from baseline.  This was also the case for network centrality for both AUI and 
network transitivity for ACI.  Figure 3 presents interaction plots for residual ACI by degree (3b) and 
residual transitivity (3c) between true and random review baseline networks.  Complex network measures 
did not share a significant relationship with UIV or CIV. 

It is clear that certain network structures predict differences in information density measures even 
after stringent controls were applied to both information and network measures. Specifically, support for 
higher information dense messages may be the result of networks that exhibit high global connectivity 
driven by increases in specific network properties, namely, network degree and centrality.  This further 
supports previous work showing that a shared common ground may bring about higher information-dense 
language use. Specifically, networks that exhibit a more centralized nucleus and are more densely 
connected (higher degree) may be more likely to share a similar common ground amongst many members 
of the group. If so, a shared common ground may result in more unique language use.  Yet, networks that 
exhibit close, niche-like groupings exemplified by high network transitivity, may infect its members with 
the same vocabulary, decreasing the overall variability in language use. Further analysis is necessary to 
unpack the relationship that different social-network structures have with language use. 

Discussion 

We find pervasive relationships between language patterns, as expressed in information-theoretic 
measures of review content, and social network variables, even after taking care to control for collinearity.  
The main findings are listed here:  

• Reviewers used more information-dense words (RI-Ent, AUI) and bigrams (ACI) in networks 
with more friendship connections.  

• Reviewers used more information-dense words (RI-Ent, AUI) in networks that have a lower Gini 
coefficient; networks where reviews were more evenly distributed.  

• Reviewers use more information-dense words (RI-Ent, AUI) and bigrams (ACI) as network 
degree (ratio of friendships connections to number of individuals in the network) increased and as 
individuals in the network were grouped more around a single center (AUI only). 

• Reviewrs used less information-dense bigrams as the number of local friendship connections 
increased (e.g., network transitivity).  

• Unigram information variability (UIV) was higher with higher connectivity; channel capacity was 
less uniform in networks with more friendship connections.  

 The predictions laid out at the end of the Methods section are somewhat borne out. Scale-free 
networks do not appear to have a strong relationship among information-theoretic scores, but networks 
that exhibit higher transitivity do lead to lower information-dense bigrams (though not significant for any 
other information measure) and, while more connections lead to higher information density, they do not 

 The variance inflation acceptable for a given model is thought to be somewhere between 5 and 10 (Craney & 6

Surls, 2002).  After the variance predicted by nodes and edges was removed from our analyses, no complex network 
measure reached the variance inflation threshold of 5. 
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lead to lower information variability. Indeed, when considering the last finding, the opposite was true: 
Networks with higher connectivity used more information-dense words at a more varied rate.  Although 
this was not what we predicted, it is in line with previous work supporting the notion that certain 
contextual influences afford greater resilience to a varied rate of information transmission (Vinson & 
Dale, 2014b). In this case, more friendship connections may allow for richer information-dense messages 
to be successfully communicated less uniformly.  
 We found support for two predictions; (1) high transitivity networks lead to less information-
dense bigram language use and (2) high degree networks tend to exhibit higher information density. In 
addition, more centralized networks also lead to higher information-dense unigram language use.  The 
first prediction suggests that networks where more local mutual interconnections exist may be more likely 
to infect other members with similar vocabulary. That is, more local connectivity may lead to more 
linguistic imitation or entrainment.  Here we merely find that the structure of reviewers’ language use is 
similar to one another.  It is possible that similarities in linguistic structure reveal similarities in semantic 
content across connected language users, but future research is needed to support this claim.  
 Support for the second prediction suggests that users adapt their information-dense messages 
when they are more highly connected. This effect can be explained if we assume that certain social 
network structures afford groups the ability to establish an overall richer common ground.  Previous work 
shows that increased shared knowledge leads to more information dense messages (Doyle & Frank, 
submitted; Qian & Jaeger, 2012).  It may be that increases in network degree and centrality enhance 
network members’ abilities to establish a richer common ground, leading to more information dense 
messages. One possibility may be that certain networks tend to review similar types of restaurants. Again, 
further exploration into how the number of friendship connections, network degree and centrality impact 
information density and variability is needed to determine the importance of specific network properties 
in language use. Figure 4a-c provide example networks that exhibit low, middle and high network ACI 
given the specific network structures that predict ACI above (e.g., increases in network degree and 
decreases in transitivity). 

 

General Discussion 

In this chapter we explored how language use might relate to social structure. We built 962 social 
networks from over 200,000 individuals who collectively wrote over one million online customer 
business reviews.  This massive, structured dataset allowed testing how language use might adapt to 
structural differences in social networks.  Utilizing big data in this way affords assessing how differences 
in one’s local social environment might relate to language use and communication more generally.  Our 

A. High ACI B. Middle ACI C. Low ACI

Figure 4. Yelp networks occurring at the tails of certain complex 
network measure distributions (as specified in text) presenting ideal 
conditions for language use exhibiting High (A) Middle (B) and Low 
(C) average condition information (ACI).  

UNCORRECTED PROOF



findings suggest that as the connectivity of a population increases, speakers use words that are less 
common.  Complex network variables such as the edge-to-node ratio, network centrality, and local 
connectivity (e.g., transitivity) also predict changes in the properties of words used. The variability of 
word use was also affected by simple network structures in interesting ways.  As a first exploration our 
findings suggest local social interactions may contribute in interesting ways language use.  A key strength 
of using a big-data approach is in uncovering new ways to test theoretical questions about cognitive 
science, and science in general.  Below we discuss how our results fit into the broader theoretical 
framework of understanding what shapes language.  

When controlling for nodes, edges and review length, many R2 values in our regression models 
were lowered. However, finding that some variability in language use is accounted for by population 
connectivity suggests language use may be partly a function of the interactions among individuals. Both 
network degree, centrality and transitivity varied in predictable ways with information measures.  Mainly, 
as the number of connections between nodes increased and as the network became more centralized the 
use of less frequent unigrams (AUI) increased. Interestingly, networks that exhibit high connectivity and 
greater centrality may have more long-range connections.  A growing number long-range connections 
may lead to the inclusion of individuals that would normally be farther away from the center of the 
network.  Individuals in a network with these structural properties may be communicating more 
collectively; having more readily established a richer common ground.  If so, higher information density 
is more probable, as the communication that is taking place can become less generic and more complex.  
Additionally, networks with higher local connectivity, or high transitivity tend to use more common 
language, specifically bigrams. This again may be seen as supporting a theory of common ground, that 
individuals with more local connectivity are more likely to communicate using similar terminology, in 
this case, bigrams. Using a big-data approach it is possible to further explore other structural aspects of 
one’s network that might influence language use. 

While we merely speculate about potential conclusions, it is possible to obtain rough measures of 
the likelihood of including more individuals at longer ranges.  Specifically, a network’s diameter—the 
longest stretch of space between two individual nodes in any network—may serve as a measure of the 
distance that a network occupies in socio-cultural space.  This may be taken as a measure of how many 
strangers are in a network, with longer diameters being commensurate with the inclusion of more 
strangers.   

It may be fruitful to explore the impact of a single individual on a network’s language use.  We do 
not yet explore processes at the individual level, opting instead to sample networks and explore their 
aggregate linguistic tendencies. Understanding the specifics of individual interaction may be crucial 
toward understanding how and why languages adapt. We took an exploratory approach and found general 
support for the idea that network structure influences certain aspects of language use, but we did not look 
for phonological or syntactic patterns; in fact our analysis could be regarded as a relatively preliminary 
initial lexical distribution analysis. However, information finds fruitful application in quantifying massive 
text-based datasets and has been touted as foundational in an emerging understanding of language as an 
adaptive and efficient communicative system (Jaeger, 2010; Moscoso Del Prado Martín, Kostíc, Baayen, 
2004). In addition, previous work investigating the role of individual differences in structuring one’s 
network are important to consider. For instance, differences in personality, such as being extroverted or 
introverted, are  related to specific network-level differences (Kalish & Robbins, 2006).   It is open to 
further exploration as to how information flows take place in networks, such as through hubs and other 
social processes.  Perhaps tracing the origin of the network by determining the oldest reviews of the 
network and comparing these to the network’s average age may provide insight into the importance of 
how certain individuals or personalities contribute to the network’s current language use.   

We see the current results as suggestive of an approach toward language as an adaptive and 
complex system (Beckner, et al., 2009; Lupyan & Dale, in press). Our findings stand alongside previous 
research that reveals some aspect of the structure of language adapts to changes in one’s socio-cultural 
context (Klingenstein, Hitchcock & Dedeo, 2014; Kramer, Guilliory & Hancock, 2014; Lupyan & Dale, 
2010; Vilhena, et al., 2014). Since evolution can be thought of as the aggregation of smaller adaptive 
changes taking place from one generation to the next, finding differences in language within social 
networks suggests languages are adaptive, more in line with shifts in social and cultural structure than 
genetic change (Gray & Atkinson, 2003; cf. Chater, Reali & Christiansen, 2008). The results of this study 
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suggest that general language adaptation may occur over shorter time scales, in specific social contexts, 
that could be detected in accessible big-data repositories (see, e.g., recently, Stoll et al., 2015). The space 
of communicable ideas may be more dynamic, adapting to both local and global constraints at multiple 
scales of time.  A deeper understanding of why language use changes may help elucidate what ideas can 
be communicated when and why.  The application of sampling local social networks provides one method 
toward understanding what properties of a population of speakers may relate to language change over 
time—at the very least, as shown here, in terms of general usage patterns.  

Testing how real network structures influence language use is not possible without large amounts 
of data.  The network sampling technique used here allows smaller networks to be sampled within a much 
larger social-network structure.  The use of big data in this way provides an opportunity to measure subtle 
and intricate features whose impacts may go unnoticed in smaller-scale experimental datasets. Still, we 
would of course recommend interpreting initial results cautiously.  The use of big data can provide further 
insight into the cognitive factors contributing to behavior, but can only rarely be used to test for causation. 
To this point, one major role the use of big data plays in cognitive science, and one we emphasize here, is 
its ability to provide a sense of direction and a series of new hypotheses. 
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