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Introduction 

After having been plagued for centuries by unfounded speculations, the study of 
language evolution is now emerging as an area of legitimate scientific inquiry. 
Early conjectures about the origin and evolution of language suffered from a severe 
lack of empirical evidence to help rein in proposed theories. This lead to outlandish 
claims such as the idea that Chinese was the original ur-language of humankind, 
surviving the biblical flood because of Noah and his family (Webb, 1669, cited in 
Aitchison, 1998). Or, the suggestion that humans have learned how to sing and 
speak from the birds in the same way as they would have learned how to weave 
from spiders (Burnett, 1773, cited in Aitchison, 1998). Given this state of the art, it 
was perhaps not surprising that the influential Société Linguistique de Paris in 
1866 imposed a ban on papers discussing issues related to language origin and 
evolution, and effectively excluded such theorizing from the scientific discourse. 

It took more than a century before this hiatus was overcome. Fueled by 
theoretical constraints derived from recent advances in the brain and cognitive 
sciences, the last decade of the twentieth century saw a resurgence of scientific 
interest in the origin and evolution of language. What has now become clear is that 
the study of language evolution must necessarily be an interdisciplinary endeavor. 
Only by amassing evidence from many different disciplines can theorizing about 
the evolution of language be sufficiently constrained to remove it from the realm of 
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pure speculation and allow it to become an area of legitimate scientific inquiry. 
Nonetheless, direct experimentation is needed in order to go beyond existing data. 
As the current volume is a testament to, computational modeling has become the 
paradigm of choice for such experimentation. Computational models provide an 
important tool to investigate how various types of hypothesized constraints may 
affect the evolution of language. One of the advantages of this approach is that 
specific constraints and/or interactions between constraints can be studied under 
controlled circumstances. 

In this chapter, we point to artificial language learning (ALL) as an additional, 
complementary paradigm for exploring and testing hypotheses about language 
evolution. ALL involves training human subjects on artificial languages with 
particular structural constraints, and then testing their knowledge of the language. 
Because ALL permits researchers to investigate the language learning abilities of 
infants and children in a highly controlled environment, the paradigm is becoming 
increasingly popular as a method for studying language acquisition (for a review, 
see Gomez & Gerken, 2000). We suggest that ALL can similarly be applied to the 
investigation of issues pertaining to the origin and evolution of language in much 
the same way as computational modeling is currently being used. 

In the remainder of this chapter, we show how a combination of computational 
modeling and ALL can be used to elicit evidence relevant for the explanation of 
language evolution. First, we outline our theoretical perspective on language 
evolution, suggesting that the evolution of language is more appropriately viewed 
as the selection of linguistic structures rather than the adaptation of biological 
structure. Specifically, we argue that limitations on sequential learning have played 
a crucial role in shaping the evolution of linguistic structure. In support for this 
perspective we report on convergent evidence from aphasia studies, human and ape 
ALL experiments, non-human primate sequential learning studies, and 
computational modeling. We then present two case studies involving our own 
computational modeling and ALL research. The results demonstrate how 
constraints on basic word order and complex question formation can be seen to 
derive from underlying cognitive limitations on sequential learning. Finally, we 
discuss the current limitations and future challenges for our approach. 

Language as an Organism 

Languages exist only because humans can learn, produce, and process them. 
Without humans there would be no language (in the narrow sense of human 
language). It therefore makes sense to construe languages as organisms that have 
had to adapt themselves through natural selection to fit a particular ecological 
niche: the human brain (Christiansen, 1994; Christiansen & Chater, in preparation). 
In order for languages to "survive", they must adapt to the properties of the human 
learning and processing mechanisms. This is not to say that having a language does 
not confer selective advantage onto humans. It seems clear that humans with 
superior language abilities are likely to have a selective advantage over other 
humans (and other organisms) with lesser communicative powers. This is an 
uncontroversial point, forming the basic premise of many of the adaptationist 
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theories of language evolution. However, what is often not appreciated is that the 
selection forces working on language to fit humans are significantly stronger than 
the selection pressure on humans to be able to use language. In the case of the 
former, a language can only survive if it is learnable and processable by humans. 
On the other hand, adaptation towards language use is merely one out of many 
selective pressures working on humans (such as, for example, being able to avoid 
predators and find food). Whereas humans can survive without language, the 
opposite is not the case. Thus, language is more likely to have adapted itself to its 
human hosts than the other way round. Languages that are hard for humans to learn 
simply die out, or more likely, do not come into existence at all.  

The biological perspective on language as an adaptive system has a prominent 
historical pedigree. Indeed, nineteenth-century linguistics was dominated by an 
organistic view of language (for a review, see e.g., McMahon, 1994). For example, 
Franz Bopp, one of the founders of comparative linguistics, regarded language as 
an organism that could be dissected and classified (Davies, 1987). More generally, 
languages were viewed as having life cycles that included birth, progressive 
growth, procreation, and eventually decay and death. However, the notion of 
evolution underlying this organistic view of language was largely pre-Darwinian. 
This is perhaps reflected most clearly in the writings of another influential linguist, 
August Schleicher. Although he explicitly emphasized the relationship between 
linguistics and Darwinian theory (Schleicher, 1863; cited in Percival, 1987), 
Darwin’s principles of mutation, variation, and natural selection did not enter into 
the theorizing about language evolution (Nerlich, 1989). Instead, the evolution of 
language was seen in pre-Darwinian terms as the progressive growth toward 
attainment of perfection, followed by decay.  

More recently the biological view of language evolution was resurrected by 
Stevick (1963) within a modern Darwinian framework, later followed by Nerlich 
(1989). Christiansen (1994) proposed to view language as a kind of beneficial 
parasite — a nonobligate symbiant — that confers some selective advantage onto 
its human hosts without whom it cannot survive. Building on this work, Deacon 
(1997) further developed this metaphor by construing language as a virus. The 
asymmetry in the relationship between language and its human host is underscored 
by the fact that the rate of linguistic change is far greater than the rate of biological 
change. Whereas it takes about 10,000 years for a language to change into a 
completely different "species" of language (e.g., from protolanguage to present day 
language, Kiparsky, 1976), it took our remote ancestors approximately 100-
200,000 years to evolve from the archaic form of Homo sapiens into the 
anatomically modern form, Homo sapiens sapiens (see, e.g., Corballis, 1992). 
Consequently, it seems more plausible that the languages of the world have been 
closely tailored through linguistic adaptation to fit human learning, rather than the 
other way around. The fact that children are so successful at language learning is 
therefore best explained as a product of natural selection of linguistic structures, 
and not as the adaptation of biological structures, such as an innately specified 
linguistic endowment in the form of. universal grammar (UG)1. 

                                                        
1 Many functional and cognitive linguists also suggest that the putative innate UG 
constraints arise from general cognitive constraints (e.g., Givón, 1998; Hawkins, 1994; 
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Cognitive constraints on language evolution and 
acquisition 

From this perspective, it is clear that there exist innate constraints guiding language 
learning. Indeed, a recent population dynamics model by Nowak, Komarova, and 
Niyogi (2001) provides a mathematical setting for exploring language acquisition 
under constraints (such as UG), and evolutionary competition among them. This 
mathematical model is based on what the authors call a "coherence threshold". In 
order for a population to communicate successfully, all its members must acquire 
the same language. The coherence threshold is a property that UG or other 
potential constraints must meet for them to induce "coherent grammatical 
communication" in the linguistic community. When the authors used this 
mathematical framework to compare competing systems of constraints (different 
UGs), they found that complexity confers a fitness advantage upon them2. This is 
offered as an explanation for the emergence of complex, rule-based languages. 
Although UG is the purported object of study in Nowak et al., there is little to 
preclude extending these findings to our own perspective. The innate constraints 
need not be language-specific in nature for the model's assumptions to be satisfied. 
The important question is therefore not about the existence of innate constraints on 
language—we take this to be given—but rather what the nature is of such 
constraints. 

Given our perspective on language evolution, we suggest that many of these 
innate constraints derive from limitations on sequential learning. By "sequential 
learning" we here focus on the learning of hierarchically organized structure from 
temporally-ordered input, in which combinations of primitive elements can 
themselves become primitives for further higher-level combinations. For example, 
consider the case of following a recipe involving mixing separately one set of 
ingredients in one bowl and other ingredients in another bowl before mixing the 
contents of the two bowls together (possibly with additional ingredients). The 
preparation of certain plant foods by mountain gorillas (Gorilla g. beringei) in 
Rwanda, Zaire and Uganda provides another example of complex sequential 
learning (Byrne & Russon, 1998). Because their favorite foods are protected by 
physical defenses such as spines or stings, the gorillas learn hierarchical manual 
sequences with repeated subpatterns in order to collect the plant material and make 
it edible. Although sequential learning appears to be ubiquitous across animal 
species (e.g., Reber, 1993), humans may be the only species with complex 

                                                                                                                                
Langacker, 1987). Our approach distinguishes itself from these linguistic perspectives in 
that it emphasizes the role of sequential learning in the explanation of linguistic constraints. 
Another difference is our general emphasis on the acquisition of language, rather than the 
processing of language (cf. Hawkins, 1994). 
2 Nowak et al. (2001) also noted that when they varied the number of sentences available to 
the learners, they found that intermediate values maximized fitness. They claim this 
provides an explanation for the critical language acquisition period. Though the model is 
touted as an evolutionary framework for illuminating a supposedly biological property of 
our species (UG), this explanation for the critical period relies on an unbiological basis.  
Hypotheses of critical periods involve maturational issues of the learning mechanism, not 
the number of sentences offered by the environment. 
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sequential learning abilities flexible enough to accommodate a communication 
system containing several layers of temporal hierarchical structure (at the level of 
phonology, morphology and syntax). Next we present converging evidence from 
studies of aphasia, ALL, studies of non-human primates, and computational 
modeling—all of which points to the importance of sequential learning in the 
evolution language. 

Language and Sequential Learning 

Several lines of evidence currently support the importance of sequential learning in 
language evolution. This evidence spans a number of different research areas, 
ranging from sequential learning abilities of aphasic patients to computational 
modeling of language evolution. When these sources are considered within the 
framework argued for here, they converge in support of a strong association 
between sequential learning and language evolution, acquisition, and processing. 

Evidence from aphasia studies 

The first line of evidence comes from the study of aphasia. If language and 
sequential learning are subserved by the same underlying mechanisms, as we have 
suggested here, then one would expect that breakdown of language in certain types 
of aphasia to be associated with impaired sequential learning and processing. A 
large number of Broca's aphasics suffer from agrammatism. Their speech lacks the 
hierarchical organization we associate with syntactic structure, and instead appears 
to be a collection of single words or simple word combinations. Importantly, 
Grossman (1980) found that Broca's aphasics, besides agrammatism, also had an 
additional deficit in sequentially reconstructing hierarchical tree structure models 
from memory. He took this as suggesting that Broca's area subserves not only 
syntactic speech production, but also functions as a locus for supramodal 
processing of hierarchically structured behavior. Another study has suggested a 
similar association between language and sequential processing. Kimura (1988) 
reported that sign aphasics often also suffer from apraxia; that is, they have 
additional problems with the production of novel sequential hand and arm 
movements not specific to sign language. 

More recently, Christiansen, Kelly, Shillcock, and Greenfield (in preparation) 
provided a more direct test of the suggested link between breakdown of language 
and breakdown of sequential learning. They conducted an ALL study using 
agrammatic patients and normal controls matched for age, socio-economic status, 
and spatial reasoning abilities. Artificial language learning experiments typically 
involve training and testing subjects on strings generated from a small grammar. 
The vocabulary of these grammars can consist of letters, nonsense words, or non-
linguistic symbols (e.g., shapes). Because of the underlying sequential structure of 
the stimuli, the experiments can serve as a window onto the relationship between 
the learning and processing of linguistic and sequential structure. The subjects in 
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the Christiansen et. al. study were trained on an artificial language using a match-
mismatch pairing task in which they had to decide whether two consecutively 
presented symbol strings were the same or different. After training, subjects were 
presented with novel strings, half of which were derived from the grammar and 
half not. Subjects were told that the training strings were generated by a complex 
set of rules, and asked to classify the new strings according to whether they 
followed these rules or not. The results showed that although both groups did very 
well on the pairing task, the normal controls were significantly better at classifying 
the new test strings in comparison with the agrammatic aphasics. Indeed, the 
aphasic patients were no better than chance at classifying the test items. Thus, the 
study indicates that agrammatic aphasic patients have problems with sequential 
learning in addition to their more obvious language deficits. Together, these 
experimentally observed sequential learning and processing deficits associated 
with agrammatic aphasia point to a close connection between the learning and 
processing of language and complex sequential structure. 

Evidence from artificial language learning experiments 

Our approach hypothesizes that many of the cognitive constraints that have shaped 
the evolution of language are still at play in our current cognitive and linguistic 
abilities. If this hypothesis is correct, then it should be possible to uncover the 
source of some of the universal linguistic constraints in human performance on 
sequential learning tasks. We therefore review a series of ALL studies with normal 
populations as a second line of evidence for the close relationship between 
language and sequential learning. 

The acquisition and processing of language appears to be facilitated by the 
presence of multiple sources of probabilistic information in the input (e.g., concord 
morphology and prosodic information; see contributions in Morgan & Demuth, 
1996). Morgan, Meyer, and Newport (1987) demonstrated that ALL is also 
facilitated by the existence of multiple information sources. They exposed adults to 
artificial languages with or without additional cue information, such as prosodic or 
morphological marking of phrases. Subjects provided with the additional cue 
information acquired more of the linguistic structure of the artificial language. 
More recently, Saffran (2001) studied the learning of an artificial language with or 
without the kind of predictive constraints found in natural language (e.g., the 
presence of the determiner, the, is a very strong predictor of an upcoming noun). 
She found that both adults and children acquired more of the underlying structure 
of the language when it incorporated the "natural" predictive constraints. Saffran 
(2000) has also demonstrated that the same predictive constraint is at play when 
subjects are exposed to an artificial language consisting of non-linguistic sounds 
(e.g., drum rolls, etc.), providing further support for the non-linguistic nature of the 
underlying constraints. In unison with our perspective, the authors of these ALL 
studies suggest that human languages might contain certain sequential patterns, not 
because of linguistic constraints, but rather because of the general learning 
constraints of the human brain.  
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The ALL studies with normal and aphasic populations together point to a 
strong association between language and the learning and processing of sequential 
structure. The close connection in terms of underlying brain mechanisms is further 
underscored by recent neuroimaging studies of ALL. Steinhauer, Friederici, and 
Pfeifer (2001) had subjects play a kind of board game in which two players were 
required to communicate via an artificial language. After substantial training, 
event-related potential (ERP) brainwave patterns were then recorded as the 
subjects were tested on grammatical and ungrammatical sentences from the 
language. The results showed the same frontal negativity pattern (P600) for 
syntactic violations in the artificial language as has been found for similar 
violations in natural language (e.g., Osterhout & Holcomb, 1992). Another study 
by Patel, Gibson, Ratner, Besson, and Holcomb (1998) further corroborates this 
pattern of results but with non-linguistic sequential stimuli: musical sequences with 
target chords either within the key of a major musical phrase or out of key. When 
they directly compared the ERP patterns elicited for syntactic incongruities in 
language with the ERP patterns elicited for incongruent out-of-key target chords, 
they found that the two types of sequential incongruities resulted in the same, 
statistically indistinguishable P600 components. In a more recent study, Maess, 
Koelsch, Gunter, and Friederici (2001) used magnetoencephalography (MEG) to 
localize the neural substrates that may be involved in the processing of musical 
sequences. They found that Broca's area in the left hemisphere (and the 
corresponding frontal area in the right hemisphere) produced significant activation 
when subjects listened to musical sequences that included an off-key chord. The 
ALL studies reviewed here converge on the suggestion that the same underlying 
brain mechanisms are used for the learning and processing of both linguistic and 
non-linguistic sequential structure, and that similar constraints are imposed on both 
language and sequential learning. 

Evidence from non-human primate studies 

The perspective on language evolution presented here suggests that language to a 
large extent "piggy-backed" on pre-existing sequential learning and processing 
mechanisms, and that limitations on these mechanisms in turn gave rise to many of 
the linguistic constraints observed across the languages of the world. If this 
evolutionary scenario is on the right track, one would expect to see some evidence 
of complex sequential learning in our closest primate relatives—and this is exactly 
what is suggested by the third line of evidence that we survey here. 

A review of recent studies investigating sequential learning in non-human 
primates (Conway & Christiansen, 2001) indicates that there is considerable 
overlap between the sequential learning abilities of humans and non-human 
primates. For instance, macaque monkeys (Macaca mulatta and Macaca 
fascicularis) not only are competent list-learners (Swartz, Chen, & Terrace, 2000) 
but they appear to encode and represent sequential items by learning each item's 
ordinal position (Orlov, Yakovlev, Hochstein, & Zohary, 2000) rather than by a 
simple association mechanism. In addition, cotton-top tamarins (Saguinus oedipus) 
are able to successfully segment artificial words from an auditory speech stream by 
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relying on statistical information in a manner similar to human infants (Hauser, 
Newport, & Aslin, 2001; Saffran, Aslin, & Newport, 1996). Finally, as mentioned 
earlier, a group of African mountain gorillas apparently observationally learn 
sequences of complex and hierarchically organized manual actions to bypass the 
natural defenses of edible plants (Byrne & Russon, 1998). However, despite these 
impressive sequential learning abilities, non-human primates also display certain 
limitations in comparison to humans. In some tasks, non-humans need 
considerably longer training in order to adequately learn sequential information 
(cf., Lock & Colombo, 1996). More importantly, non-human subjects often display 
sequential learning and behavior that is less complex and less developed compared 
to human children and adults (e.g., Oshiba, 1997), especially with regards to the 
learning of hierarchical structure (e.g., Johnson-Pynn, Fragaszy, Hirsh, Brakke, & 
Greenfield, 1999; Spinozzi & Langer, 1999). We suggest that such limitations may 
help explain why non-human primates have not developed complex, human-like 
language. 

The limitations of the non-human primates on sequential learning and 
processing are also likely to play a role in the explanation of the limited success of 
the numerous ape language learning experiments. Indeed, we see these experiments 
as complex versions of the ALL tasks used with humans3. Much like some human 
ALL experiments, the non-human primates must learn to associate arbitrary visual 
symbols (lexigrams), manual signs, or spoken words with objects, actions, and 
events. Some of these studies have shown that apes can acquire complex artificial 
languages with years of extensive training. Although some of the "stars" of these 
experiments—such as the female gorilla Koko (Patterson, 1978) and the male 
bonobo Kanzi (Savage-Rumbaugh, Shanker, & Taylor, 1998)—have demonstrated 
remarkable abilities for learning the artificial language they have been exposed to, 
they nevertheless also seem to experience problems with complex sequential 
structures. Non-human primates, in particular the apes, possess sequential learning 
abilities of a reasonable complexity and appear to be able to utilize these abilities 
in complex ALL tasks. Yet the language abilities of these apes remain relatively 
limited compared to those of young children. On our account, the better sequential 
learning and processing abilities observed in humans are likely to be the product of 
evolutionary changes occurring after the branching point between early hominids 
and the ancestors of extant apes. These evolutionary improvements in sequential 
learning have then subsequently provided the basis for the evolution of language.  

Evidence from computational modeling 

An important question for all evolutionary accounts of language pertains to the 
feasibility of the underlying assumptions. For example, our approach emphasizes 

                                                        
3 Early ape language experiments attempted to teach non-human primates actual human 
language (e.g., Kellogg & Kellogg, 1933).  The animals were spoken to and treated in a 
manner similar to human infants and young children. However, this approach was 
subsequently abandoned because of lack of success and replaced by the artificial language 
methodology  used today. 
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the role of linguistic adaptation over biological adaptation in the evolution of 
language. As we have mentioned earlier, computational modeling provides a very 
fruitful means with which to test the assumptions of a given approach. As a final 
line of evidence in support of our perspective on language evolution we therefore 
review some recent modeling efforts that demonstrate its computational 
feasibility4. 

Several recent computational modeling studies have shown how the adaptation 
of linguistic structure can result in the emergence of complex languages with 
features very similar to what is observed in natural languages. Batali’s (1998) 
"negotiation" model explored the appearance of systematic communication in a 
social group of agents in the form of simple recurrent networks (SRN; Elman, 
1990). An SRN is essentially a standard feed-forward neural network equipped 
with an extra layer of so-called context units. At a particular time step t, an input 
pattern is propagated through the hidden unit layer to the output layer. At the next 
time step, t+1, the activation of the hidden unit layer at time t is copied back to the 
context layer and paired with the current input. This means that the current state of 
the hidden units can influence the processing of subsequent inputs, providing a 
limited ability to deal with sequentially presented input incorporating hierarchical 
structure. Although these network agents were not initially equipped with a system 
of communication, the generated sequences gradually exhibited systematicity. 
Batali also demonstrated that this communication system enabled the agents to 
convey novel meanings. Importantly, there was no "biological" adaptation (e.g., 
selection of better learners); instead, the communication system emerged from 
linguistic adaptation driven by the social interaction of agents. Kirby offered a 
similar account for the evolution of typological universals (Kirby, 1998), and 
systematic communication in agents without prior grammatical encoding (Kirby, 
2000; 2001). Using abstract rule-based descriptions of individual language 
fragments, Kirby demonstrated that fairly complex properties of language could 
arise under an adaptive interpretation of linguistic selection. 

Livingstone (2000) and Livingstone and Fyfe (1999) used a similar technique 
to show that linguistic diversity can arise from an imperfect cultural transmission 
of language among a spatially organized group of communicating agents. In their 
simulations, neural network agents, able only to communicate with others in close 
proximity, exhibited a dialect continuum: intelligibility was high in clusters of 
agents, but diminished significantly as the distance between two agents increased. 
In a similar simulation without such spatial distribution (where any agent is equally 
probable to communicate with all others), diversity rapidly converged onto a global 
language. This work demonstrates how linguistic diversity may arise through 
linguistic adaptation across a spatially distributed population of agents, perhaps 
giving rise to different languages over time. Some of these emergent languages are 
likely to be more easily accommodated by sequential learning and processing 
mechanisms than other languages. This sequential learnability difference is, ceteris 

                                                        
4 To keep our discussion brief, we focus on the computational modeling of linguistic 
adaptation, side-stepping the issue of the origin of language. For simulations relevant to this 
perspective, see e.g., Arbib (this volume) and Parisi and Cangelosi (this volume). 
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paribus5, likely to result in different frequency distributions across languages. 
Simulations by Van Everbroek (1999) substantiate this hypothesis. He used a 
variation of the SRN to investigate how sequential learning and processing 
limitations might be related to the distribution of the world’s language types. He 
constructed example sentences from 42 artificial languages, varying in three 
dimensions: word order (e.g., subject-verb-object), nominal marking (accusative 
vs. ergative), and verbal marking. The networks easily processed language types 
with medium to high frequency, while low frequency language types resulted in 
poor performance. These simulations support a connection between the distribution 
of language types and constraints on sequential learning and processing, suggesting 
that frequent language types are those that have successfully adapted to these 
learning and processing limitations. 

The computational modeling results lend support to the suggestion that the 
evolution of language may have been shaped by linguistic adaptation to pre-
existing constraints on sequential learning and processing. When these results are 
viewed together with the evidence showing a breakdown of sequential learning in 
agrammatic aphasia, the ALL demonstrations of linguistic constraints as reflections 
of sequential learning limitations with similar neural substrates, and the existence 
of relatively complex sequential learning abilities in apes, they all appear to 
converge on the language evolution account we have put forward here. Next, we 
present two case studies that provide further evidence for the idea that constraints 
on sequential learning may underlie many universal linguistic constraints. 

Explaining Basic Word Order Constraints 

Across the languages of the world there are certain universal constraints on the 
way in which languages are structured and used. These so-called linguistic 
universals help explain why the known human languages only take up a small 
fraction of the vast space defined by the logically possible linguistic subpatterns. 
From the viewpoint of the UG approach to language, the universal constraints on 
the acquisition and processing of language are essentially arbitrary (e.g., Pinker & 
Bloom, 1990). That is, given the Chomskyan perspective on language, these 
constraints appear arbitrary because it is possible to imagine a multitude of 
alternative, and equally adaptive, constraints on linguistic form. For instance, 
Piattelli-Palmarini (1989) contends that there are no (linguistic) reasons not to form 
yes-no questions by reversing the word order of a sentence instead of the normal 
inversion of subject and auxiliary. On our account, however, these universal 
constraints are in most cases not arbitrary. Rather, they are determined 
predominately by the properties of the human learning and processing mechanisms 
that underlie our language capacity. This can explain why we do not reverse the 

                                                        
5 Of course, other factors are likely to play a role in whether or not a given language may be 
learnable. For example, the presence of concord morphology may help overcome some 
sequential learning difficulties as demonstrated by an ALL experiment by Morgan et al. 
(1987). Nonetheless, sequential learning difficulties are hypothesized to be strong predictors 
of frequency in the absence of such ameliorating factors. 
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word order to form yes-no questions; it would put too heavy a load on memory to 
store a whole sentence in order to be able to reverse it.  

Head-order consistency 

There is a statistical tendency across human languages to conform to a form in 
which the head of a phrase consistently is placed in the same position—either first 
or last—with respect to the remaining clause material. English is considered to be a 
head-first language, meaning that the head is most frequently placed first in a 
phrase, as when the verb is placed before the object noun phrase (NP) in a 
transitive verb phrase (VP) such as "eat curry". In contrast, speakers of Hindi 
would say the equivalent of "curry eat", because Hindi is a head-last language. 
Likewise, head-first languages tend to have prepositions before the NP in 
prepositional phrases (PP) (such as "with a fork"), whereas head-last languages 
tend to have postpositions following the NP in PPs (such as "a fork with"). Within 
the Chomskyan approach to language (e.g., Chomsky, 1986) such head direction 
consistency has been explained in terms of an innate module known as X-bar 
theory which specifies constraints on the phrase structure of languages. It has 
further been suggested that this module emerged as a product of natural selection 
(Pinker, 1994). As such, it comes as part of the UG with which every child is 
supposedly born. All that remains for a child to "learn" about this aspect of her 
native language is the direction (i.e., head-first or head-last) of the so-called head-
parameter. 

The evolutionary perspective that we have proposed above suggests an 
alternative explanation in which head-order consistency is a by-product of non-
linguistic constraints on the learning of hierarchically organized temporal 
sequences. In particular, if recursively consistent combinations of grammatical 
regularities, such as those found in head-first and head-last languages, are easier to 
learn (and process) than recursively inconsistent combinations, then it seems 
plausible that recursively inconsistent languages would simply "die out" (or not 
come into existence), whereas the recursively consistent languages should 
proliferate. As a consequence languages incorporating a high degree of recursive 
inconsistency should be far less frequent among the languages of the world than 
their more consistent counterparts. In other words, languages may need to have a 
certain recursive consistency across their different grammatical regularities in 
order for the former to be learnable by learning devices with adapted sensitivity to 
sequential information. Languages that do not have this kind of consistency in their 
grammatical structure may not be learnable, and they will, furthermore, be difficult 
to process (cf. Hawkins, 1994). 

From this perspective, Christiansen and Devlin (1997) provided an analysis of 
the interactions in a recursive rule set with consistent and inconsistent ordering of 
the heads6. A recursive rule set is a pair of rules for which the expansion of one 
rule involves the second rule, and vice versa; e.g., 

                                                        
6 The fact that we use rules and (later) syntactic trees to characterize the language to be 
acquired should not be taken as suggesting that we believe that the end-product of the 
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 A → a (B) 
 B → b A 

This analysis showed that head-order inconsistency in a recursive rule set, such as,  

 A → a (B) 
 B → A b 

creates center-embedded constructions, whereas a consistent ordering of heads 
creates right-branching constructions for head-first orderings and left-branching 
constructions for head-last orderings. Center-embeddings are difficult to process 
because constituents cannot be completed immediately, forcing the language 
processor to keep lexical material in memory until it can be discharged. For the 
same reason, center-embedded structures are likely to be difficult to learn because 
of the distance between the material relevant for the discovery and/or 
reinforcement of a particular grammatical regularity. This means that recursively 
inconsistent rule sets are likely to be harder to learn than recursively consistent rule 
sets.  

To explore the notion of recursive inconsistency further, Christiansen and 
Devlin created the grammar skeleton shown in Table 8.1. The curly brackets 
around the constituents on the right-hand side of rules 1-5 indicate that the order of 
these constituents can be either as is (i.e., head-first) or the reverse (i.e., head-last). 
From this grammar skeleton, it is therefore possible to produce (25=) 32 different 
grammars with varying degrees of head-order consistency. There are two 
possibilities for recursive inconsistency: a) the PP recursive rules set (rules 1 and 
2), and b) the PossP (possessive phrase) recursive rule set (rules 4 and 5). Since a 
PP can occur inside both NPs and VPs, an inconsistency within this rule set was 
predicted to impair learning more than an inconsistency violation within the PossP 
recursive rule set. Grammars that involved inconsistent PP recursive rule sets were 
therefore assigned an inconsistency penalty of 2 and grammars with inconsistent 
PossP recursive rule sets a penalty of 1. The top panel of Figure 8.1 shows the 
predicted learning difficulty of each grammar, ranging between 0 to 3. 

 

Table 8.1 The grammar skeleton used by Christiansen and Devlin (1997). Curly 
brackets indicate that the ordering of the constituents can be either as is (i.e., head-
first) or in reverse (i.e., head-last), whereas parentheses indicate optional 
constituents. 

S → NP VP 
NP → { N (PP)}  (1) 
PP → { adp NP}  (2) 
VP → { V (NP) (PP)}   (3) 
NP → { N (PossP)}  (4) 
PossP → { Poss NP}  (5) 

                                                                                                                                
acquisition process is a set of rules. We merely use rules and syntactic trees as convenient 
descriptive devices, approximating the particular grammatical regularities that we are 
considering. 
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Connectionist simulations 

In order to test the hypothesis that non-linguistic constraints on sequential learning 
restrict the set of languages that are easily learnable, Christiansen and Devlin 
conducted a series of connectionist simulations in which SRNs were trained on 
sentences generated from each of the 32 grammars. The networks were trained to 
predict the next lexical category in a sentence, using sentences generated by the 32 
grammars. Each unit in the input/output layers corresponded to one of seven 
lexical categories or an end of sentence marker: singular/plural noun (N), 
singular/plural verb (V), singular/plural possessive genitive affix (Poss), and 
adposition (adp). Although these input/output representations abstract away from 
many of the complexities facing language learners, they suffice to capture the 
fundamental aspects of grammar learning important to our hypothesis. Network 
performance was measured in terms of the networks’  ability to predict the 
probability distribution of possible next items given prior sentential context. The 
bottom panel of Figure 8.1 shows SRN performance, averaged over 25 networks, 
for each of the 32 different grammars. A comparison between the top and bottom 
panels in Figure 8.1 reveals that the grammars that were predicted to be harder to 
learn because of high recursive inconsistency are the ones that the SRNs showed 
decreased performance on. A regression analysis confirmed this observation, 
showing a strong correlation between the degree of head-order consistency of a 
given grammar and the degree to which the network had learned to master the 
grammatical regularities underlying that grammar: The higher the inconsistency, 
the more erroneous the final network performance was. The sequential biases of 
the networks made the corpora generated by consistent grammars considerably 
easier to acquire than the corpora generated from inconsistent grammars. 

This is an important result because it is not obvious that the SRNs should be 
sensitive to inconsistencies at the structural level. The SRN did not have any built-
in linguistic biases; rather, it was designed for the learning of complex sequential 
structure (e.g., Cleeremans, 1993). Moreover, recall that the networks only were 
presented with lexical categories one at a time, and that structural information 
about grammatical regularities had to be induced from the way the lexical 
categories combine in the input. No explicit structural information was provided, 
yet the networks were sensitive to the recursive inconsistencies. In this connection, 
it is worth noting that Christiansen and Chater (1999) have shown that increasing 
the size of the hidden/context layers (beyond a certain minimum) does not affect 
SRN performance on center-embedded constructions (i.e., structures which are 
recursively inconsistent structures). This suggests that Christiansen and Devlin’s 
results may not be dependent on the specific size of the SRNs they used, nor is it 
likely to depend on the size of the training corpus. 

Typological analyses by Christiansen and Devlin using the FANAL database 
(Dryer, 1992) with typological information about some 625 languages further 
corroborated our account. Languages that incorporated fragments that the 
networks found hard to learn tended to be less frequent among the languages of the 
world compared to languages the networks learned more easily. This suggests that 
constraints on basic word order may derive from non-linguistic constraints on the 
learning and processing of complex sequential structure, perhaps obviating the  
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Figure 8.1 The predicted learning difficulty for the 32 grammars from Christiansen 
and Devlin (1997) (top panel) shown with the difficulty that the network 
experienced with each grammar (bottom panel). Error bars indicate standard error of 
the mean.  
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need for an innate X-bar module to explain such word order universals. 
Grammatical constructions incorporating a high degree of head-order inconsistency 
may be too hard to learn and would therefore tend to disappear. 

Artificial language learning experiment 

The final set of evidence supporting our explanation of basic word order universals 
comes from a recent ALL study by Christiansen (2000). In one experiment, 
Christiansen took two of the grammars that Christiansen and Devlin had used for 
their network simulation—a consistent and an inconsistent grammar (see Table 
8.2)—and trained subjects on sentences (represented as consonant strings) derived 
from the two grammars. Training and test materials were controlled for length and 
differences in the distribution of bigram and trigram fragments. In the training 
phase of the experiment, subjects read and reproduced consonant strings on a 
computer. After training, subjects were informed that the strings were generated by 
a complex set of rules, and that they would be presented with additional strings; 
some of which were generated by the same rule set (i.e., grammatical), and some 
which were not (i.e., ungrammatical). They were then asked to decide which of the 
new strings were generated by the same rule set as before, and which were not. The 
results showed that the subjects trained on strings from the consistent grammar 
were significantly better at distinguishing grammatical from ungrammatical items 
than the subjects trained on the inconsistent grammar. 

Together, Christiansen’s ALL experiment and the three sets of evidence from 
Devlin and Christiansen converge in support of our claim that basic word order 
universals (head-ordering) can be explained in terms of non-linguistic constraints 
on sequential learning and processing. This research thus suggests that universal 
word order correlations may emerge from non-linguistic constraints on learning, 
rather than being a product of innate linguistic knowledge. In the next section, we 
show how constraints on complex question formation may be explained in a 
similar manner.  

 

Table 8.2 The two grammars used for stimuli generation in Christiansen (2000). 
The vocabulary is: { X, Z, Q, V, S, M}  

Consistent Grammar  Inconsistent Grammar  
S → NP VP 
NP → (PP) N 
PP → NP post 
VP → (PP) (NP) V 
NP → (PossP) N 
PossP → NP Poss 

S → NP VP 
NP → (PP) N 
PP → pre NP 
VP → (PP) (NP) V 
NP → (PossP) N 
PossP → Poss NP 
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Subjacency through Linguistic Adaptation 

According to Pinker and Bloom (1990), subjacency is one of the classic examples 
of an arbitrary linguistic universal that makes sense only from a linguistic 
perspective. Subjacency provides constraints on complex question formation. 
Informally, "Subjacency, in effect, keeps rules from relating elements that are 'too 
far apart from each other', where the distance apart is defined in term of the number 
of designated nodes that there are between them" (Newmeyer, 1991, p. 12). 
Consider the following sentences: 

1.  Sara heard (the) news that everybody likes cats. 
       N      V                N  comp       N         V     N 

2.  What (did) Sara hear that everybody likes? 
      Wh              N     V  comp       N         V 

3. *What (did) Sara hear (the) news that everybody likes? 
      Wh               N     V              N   comp      N          V 
 
According to the subjacency principle, sentence 3 is ungrammatical because too 
many boundary nodes are placed between the noun phrase complement (NP-
Comp) and its respective "gaps". 

The subjacency principle, in effect, places certain restrictions on the ordering of 
words in complex questions. The movement of Wh-items (what in Figure 8.2) is 
limited with respect to the number of so-called bounding nodes that it may cross 
during its upward movement. In English, the bounding nodes are S and NP (circled 
in Figure 8.2). Put informally, as a Wh-item moves up the tree it can use comps as 
temporary "landing sites" from which to launch the next move. The subjacency 
principle states that during any move only a single bounding node may be crossed. 
Sentence 2 is therefore grammatical because only one bounding node is crossed for 
each of the two moves to the top comp node (Figure 8.2, top panel). Sentence 3 is 
ungrammatical, however, because the Wh-item has to cross two bounding nodes—
NP and S—between the temporary comp landing site and the topmost comp, as 
illustrated in bottom panel of Figure 8.2. 

Not only do subjacency violations occur in NP-complements, but they can also 
occur in Wh-phrase complements (Wh-Comp). Consider the following examples: 

4.  Sara asked why everyone likes cats. 
       N      V      Wh      N          V     N 

5.  Who (did) Sara ask why everyone likes cats? 
      Wh             N    V    Wh      N          V    N 

6. *What (did) Sara ask why everyone likes? 
       Wh             N     V   Wh       N         V 
 
According to the subjacency principle, sentence 6 is ungrammatical because the 
interrogative pronoun has moved across too many bounding nodes (as was the case 
in 3). 
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Table 8.3 The structure of the natural and unnatural languages in Ellefson and 
Christiansen (2000). The vocabulary is: { X, Z, Q, V, S, M}  

Natural Unnatural 
N V N N V N 
Wh N V Wh N V 
N V N comp N V N N V N comp N V N 
N V Wh N V N N V Wh N V N 
Wh N V comp N V *Wh N V  N comp N V 
Wh N V Wh N V N *Wh N V Wh N V  

Artificial language learning experiment 

Ellefson and Christiansen (2000) explored an alternative explanation, suggesting 
that subjacency violations are avoided, not because of a biological adaptation 
incorporating the subjacency principle, but because language itself has undergone 
adaptations to root out such violations in response to non-linguistic constraints on 
sequential learning. They created two artificial languages to test this idea. As 
shown in Table 8.3, both languages consisted of six sentence types of which four 
were identical across the two languages. The two remaining sentence types 
involved complex question formation. In the natural language the two complex 
questions were formed in accordance with subjacency, whereas the two complex 
questions in the unnatural language violated the subjacency constraints. All 
training and test items were controlled for length and fragment information. As in 
the previous ALL experiment, subjects were not told about the linguistic nature of 
the stimuli until they received the instructions for the test phase. 

The results showed that the subjects trained on the natural language had learned 
the language significantly better than the subjects trained on the unnatural 
language. Subjects in the natural condition performed marginally better than the 
subjects in the unnatural condition at classifying strings related to the two complex 
questions. Interestingly, the natural group was significantly better at classifying the 
remaining four sentence types in comparison with the unnatural group—despite the 
fact that both groups were trained on exactly the same items and saw exactly the 
same test items. The presence of the two unnatural question formation sentence 
types affected the learning of the other four test items. In other words, the presence 
of the subjacency violations in two of the sentence types in the unnatural language 
affected the learning of the language as a whole, not just the two complex question 
items. From the viewpoint of language evolution, languages such as this unnatural 
language would lose out in competition with other languages such as the natural 
language because the latter is easier to learn. 

Connectionist simulations 

In principle, one could object that the reason why Ellefson and Christiansen found 
differences between the natural and the unnatural groups is because the former in 
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some way was able to tap into an innately specified subjacency principle when 
learning the language. Another possible objection is that the natural language 
follows the general pattern of English whereas the unnatural language does not, 
and that our human results could potentially reflect an "English effect". To counter 
these possible objections, and to support the suggestion that the difference in 
learnability between the two languages is brought about by constraints arising from 
sequential learning, Ellefson and Christiansen conducted a set of connectionist 
simulations of the human data using SRNs—a sequential learning device that 
clearly does not have subjacency constraints built-in. They used one network for 
each subject, and found that the networks were significantly better at learning the 
natural language in comparison with the unnatural language. Thus, the simulation 
results closely mimicked the ALL results, corroborating the suggestion that 
constraints on the learning and processing of sequential structure may explain why 
subjacency violations tend to be avoided: These violations were weeded out 
because they made the sequential structure of language too difficult to learn. Thus, 
rather than having an innate UG principle to rule out subjacency violations, we 
suggest that they may have been eliminated altogether through linguistic 
adaptation. 

General Discussion 

In this chapter we have argued for a view of language evolution, acquisition, and 
processing that places these phenomena within the more general domain of 
sequential learning. We hypothesize that constraints on sequential learning help 
define a cognitive niche within which languages have had to adapt. A considerable 
amount of evidence that supports this view has been discussed. ALL studies of 
normal human subjects illuminate the importance of complexity and consistency in 
learning artificial languages. From our perspective, the experiments suggest that 
languages have evolved these and other properties to facilitate learning. Over time 
this process of linguistic adaptation has resulted in the structural constraints on 
language use that we observe today. The association between sequential learning 
and natural language is further evidenced by ALL experiments that demonstrate 
the accompanying breakdown of sequential skills in agrammatics (Christiansen et 
al., in preparation). Related artificial language experiments have also demonstrated 
that non-human primates can achieve relative proficiency in complex sequential 
tasks. This is not surprising in our view, since the fundamental role of sequential 
learning implies a long phylogenetic history: Primate studies in natural contexts 
have readily provided evidence of these complex sequential abilities. 

In a similar vein, computational models allow researchers to explore and test 
hypotheses about factors contributing to language evolution in maximally 
controlled circumstances. Many of the models discussed in this paper have 
incorporated sequential learning mechanisms that shape language evolution. Put 
simply, these models can be viewed as investigations into the constraints on 
language imposed by sequential learning in a social environment. The results of 
these computational efforts dovetail with our view. We discussed Christiansen and 
Devlin’s (1997) simulation, which showed how constraints on sequential learning 
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can explain basic word order constraints. Also, Ellefson and Christiansen (2000), 
provided an explanation, based on sequential learning constraints, for why 
subjacency violations tend to be avoided across the languages of the world. 
Together, the results from all these computational models suggest that constraints 
arising from general cognitive processes, such as sequential learning and 
processing, are likely to play a larger role in language evolution than has 
traditionally been assumed. What we observe today as linguistic universals may be 
stable states that have emerged through an extended process of linguistic evolution.  

As is customary in many scientific endeavors, the sources of evidence reported 
here abstracts away from many potentially important details. First, ALL 
experiments provide a highly idealized window into real language acquisition and 
processing. The artificial languages are highly simplified and often lack the social 
context in which language is normally acquired. Nonetheless, ALL studies have 
yielded important insights into the acquisition of language (for a review, see 
Gomez & Gerken, 2000). The computational modeling of language evolution 
shares many of the same limitations as ALL. For example, most of the modeled 
communication systems are equally simplified and embedded within a social 
context that is often reduced to a collection of abstract semantic features. However, 
we see the limitations on current use of ALL and computational modeling as 
unavoidable growing pains associated with a field very much in its infancy. Both 
lines of research methodologies are essential sources of information for furthering 
our understanding of language evolution. Their limitations underscore the necessity 
of an interdisciplinary approach. Only by amassing converging evidence from 
multiple lines of investigation can evolutionary hypotheses be supported, or 
discarded. Computational modeling and ALL experiments, rendered more 
sophisticated and naturalistic, hold considerable promise as two essential sources 
of evidence for studying language evolution. 
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