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Disequilibrium in the mind, disharmony in the body
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Although it is generally acknowledged that experiences of frustration, confusion, and anxiety are
embodied phenomena, very little is known about how these processes modulate presumably
unconscious, but constantly present, subtle bodily movement. We addressed this problem by tracking
the low-level dynamics of body movement, using 1/f noise, pink noise, or ‘‘fractal scaling’’, during
naturalistic experiences of affect in two studies involving deep learning and effortful problem-solving.
Our results indicate that body movement fluctuations of individuals experiencing cognitive
equilibrium was characteristic of correlated pink noise, but there was a whitening of the signal
when participants experienced states that are diagnostic of cognitive distress such as anxiety,
confusion, and frustration. We orient our findings within theories that emphasise the embodied
nature of cognition and affect and with perspectives that view affective and cognitive processes as
emergent products of a self-organising dynamical system (the brain) that is inextricably coupled to
the body.
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The popular myth that emotions are detached

from cognition is in stark contrast to the growing

scientific literature that emphasises an inextricable

link between these processes (Barrett, 2006;

Dalgleish & Power, 1999; Lazarus, 2000; Mandler,

1984). It is also generally acknowledged that

‘‘basic’’ emotions such as anger and fear, as well

as states such as anxiety and frustration do not

reside exclusively in the confines of the mind;

instead, they are exuded through the body in

striking ways (Ekman, 1992; Niedenthal, 2007;

Russell, Bachorowski, & Fernandez-Dols, 2003).

In fact, the identification of bodily correlates of

cognitive and affective states has been a 150-year
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endeavour pioneered by Darwin and continued
by several others (Rosenberg & Ekman, 1994;
Russell et al., 2003; Scherer & Ellgring, 2007;
Wassmann, 2010).

Though many studies have investigated facial
expressions, speech contours, and peripheral phy-
siological responses (Camras & Shutter, 2010;
Fridlund, Ekman, & Oster, 1987; Ruch, 1995;
Russell et al., 2003), comparatively little attention
has been directed towards the role of gross body
movement as an index of affect. This is somewhat
surprising given the embodied nature of affect and
cognition. In fact, there are distinctive reasons for
focusing on gross body movements over the face
and speech. First, it could be argued that body
motions are ordinarily unconscious, unintentional,
and thereby less susceptible to social editing, at
least compared with facial expressions, speech
intonation, and some gestures. Second, human
bodies are relatively large and have multiple
degrees of freedom, thereby making the body a
potentially ideal affective communicative channel.
Third, the expectation of a systematic link
between bodily movements and complex mental
states is supported by embodied theories of
cognition (deVega, Glenberg, & Graesser,
2008), and aligns with perspectives from a long
pedigree of theories that integrate mental with
motor processes in development and everyday life
(Piaget, 1952).

The few studies that have investigated the role
of body movements in the expression of affective
states have focused on the degree of bodily
arousal, specific postures (e.g., forward-leans,
arms akimbo), and some gestures (e.g., pointing,
hailing; Bull, 1987; Coulson, 2004). Compara-
tively little is known about the low-level bodily
correlates of affective states such as frustration,
anxiety, and confusion; the latter is considered to
be an affective state (Rozin & Cohen, 2003;
Silvia, 2009). This paper addresses this issue by
analysing how these states are associated with
variations in the dynamics of presumably uncon-
scious bodily movement.

We use 1/f noise, known also as ‘‘pink noise’’ or
‘‘fractal scaling’’, in body movements as an index
of the embodied nature of cognition and affect. In

order to understand pink or 1/f noise, it is
important to realise that any signal can be
represented in two domains: the time domain
and the frequency domain. Time domain graphs,
such as the ones shown on the left panel of Figure
1, depict how a signal changes over time. These
time series can be converted into the frequency
domain, where the focus is on how the signals are
distributed across different frequency bands. This
is illustrated on the right panels of Figure 1, which
show the distribution of amplitude a (strength or
power on the Y-axis) as a function of frequency f
(on the X-axis) on log!log plots. The type of
noise in a signal can be estimated by the relation-
ship between power and frequency. Specifically, a
lack of a relationship between amplitude and
frequency (i.e., slope"0; a 8 f 0) is characteristic
of white noise (see Figure 1A and 1B). Brown
noise (or fractional Brownian motion) occurs
when the slope (called spectral slope) is #2 (a
8 f #2) as depicted in Figure 1E and 1F. Pink
noise occurs when there is an inverse relationship
between amplitude and frequency (a 8 f #1 or a
8 1/f ; see Figure 1C and 1D). The spectral
slopes for the time series in Figure 1 are 0, #1,
and #2 for white, pink, and brown noise,
respectively. These time series were prepared
from synthesised data, hence, the slopes almost
perfectly align with idealised values for white,
pink, and brown noise. Slopes of naturalistic time
series rarely adhere to these idealised values but lie
somewhere within these boundaries (Holden,
2005).

As exemplified above, the nature of the
relationship between amplitude and frequency
varies across signals, and can be used as an indirect
method to infer the ‘‘intrinsic’’ properties of the
system that produces the signal. In particular,
white noise is diagnostic of random systems where
there are no short- or long-term correlations
between observations. In contrast, brown noise is
diagnostic of strong short-term correlations be-
tween observations (random walks). Pink noise is
particularly interesting because it shows both
short-term and long-term correlations and lies
in between the two extremes of disorder (white
noise) and short-term predictability (brown noise;
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Holden, 2005; Van Orden, Holden, & Turvey,
2003).

The 1/f pattern is of substantial theoretical and
practical interest because research over the last
decade has indicated that any reliable measure of
ongoing cognition will reveal patterns of ‘‘intrinsic’’
1/f fluctuation, a consistent finding that has
generated much interest (Gilden, 2009; Kello,
Beltz, Holden, & Van Orden, 2007; Van Orden
et al., 2003; Wagenmakers, Farrell, & Ratcliff,

2004). For example, in experiments that collect
repeated response-time measures (e.g., time-
interval estimation), the fluctuation in this or-
dered series of responses is not stationary at an
average estimated time, with fully random ‘‘error’’
above and below that average (i.e., white
uncorrelated noise as depicted in Figure 1A;
Gilden, 2001). Instead, the time series show
proliferating undulations with crests and troughs
that rise and fall at very low frequencies (with

Figure 1. Sample time series depicting synthesised (A) white (C) pink, and (E) brown noise along with spectral log!log plots showing
slopes of approximately (B) zero (D) "1, and (F) "2, consistent with white, pink, and brown noise, respectively.
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high amplitude), very high frequencies (with low
amplitude), and all possible patterns between
(Figure 1C). This pattern is consistent with
some of the properties of natural fractals (self-
similarity, scaling relationships, etc.), hence, the
pink or 1/f pattern is often referred to as fractal
scaling (Mandelbrot, 1998; Van Orden, Kloos, &
Wallot, in press).

The prevalence of 1/f noise in human cogni-
tion has some important implications because the
1/f pattern is considered to be a fundamental
property of nonlinear, complex dynamical systems
studied across the physical and life sciences
(Mandelbrot, 1998). In the cognitive sciences,
the presence of this noise in human behaviour has
been viewed as evidence that human cognition
should be considered as such a dynamical system
(Kello et al., 2007; Van Orden et al., 2003).
These complex systems consist of a large number
of entities that coordinate in multi-level group-
ings (e.g., in the human case: neurons, population
codes, nerve cell assemblies, etc.), creating an
‘‘interaction-dominant’’ system (Kello et al.,
2007). This system will fluctuate at all scales,
thus producing the 1/f noise signal. Many tradi-
tional notions of our cognitive system see its
nature as fundamentally componential and line-
arly structural. Quite different from this, 1/f noise
suggests a system that self-organises at many
scales to produce intelligent behaviour.

It is important to note that any measured
behavioural output of the cognitive system does
not always, as a rule, reveal 1/f fluctuation. This
noise signature of a system’s behaviour may in
fact routinely change during its functioning. A
change away from the pink signal may reflect
changes occurring in the cognitive system itself as
it shifts from one stable state of organisation to
another (e.g., change in strategy). For example,
when participants cannot as carefully control
their behaviour in a cognitive task, the relevant
parts of the cognitive system may become
decoupled, thus diminishing the multi-scale
influences that drive long-term correlations
(pink noise) in that behaviour (Kiefer, Riley,
Shockley, Villard, & Van Orden, 2009). In
another recent example, it has been shown that

certain cognitive deficits (e.g., attention deficit
hyperactivity disorder; ADHD) can be associated
with a change in short-timescale attentional
processes, which cause changes in the dynamics
of the system’s behaviour (e.g., rhythmic beha-
viours; Gilden & Marusich, 2009). So, while
pink noise serves as a signature of ongoing
cognitive activity and ‘‘normal’’ functioning, de-
parting from it is also a crucial piece of informa-
tion, reflecting changes in the underlying
interaction-dominant dynamics. Based on this
same logic, we explored changes in the pink
signal that may occur during changes associated
with experiencing different affective states.

Dynamical systems perspectives are also gain-
ing momentum in emotion research (Camras &
Shutter, 2010; Coan, 2010; Lewis, 2005). In
particular, Coan (2010), Barrett (2006), Camras
and Shutter (2010) and others argue against the
classical notion that discrete ‘‘affect programmes’’
produce the physiological, behavioural, and sub-
jective changes associated with particular emo-
tions. Simply put, this latent emotion model
(Coan, 2010) posits that there is a specialised
circuit for each discrete emotion in the brain, and
upon activation this circuit triggers a host of
coordinated responses in the mind and body. In
contrast, a dynamical systems, or an emergent
models view, posits that there is no central affect
programme that coordinates the various compo-
nents of an emotional episode. Instead, these
components are loosely coupled and are con-
stantly interacting in a self-organising fashion.
When this system is perturbed, it is jolted from its
state of equilibrium, until it spontaneously re-
organises and equilibrium is restored. The emo-
tion ‘‘emerges’’ from the attractor (a set of states
towards which the system regularly converges) in
which this dynamical trajectory converges (Camras
& Shutter, 2010).

It is these shifts from equilibrium that are of
primary interest to this paper. The ubiquity of 1/f
noise in human cognition leads us to predict that
variations in the affective states will be associated
with meaningful shifts in the 1/f pattern (Kello
et al., 2007; Van Orden et al., 2003). Specifically,
a system in a state of equilibrium is expected to
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produce the 1/f patterns that characterise self-
organising dynamical systems. However, under
states of cognitive and emotional distress, there
should be systematic variations in the 1/f pattern
as the system is perturbed and attempts to
reorganise. Furthermore, the embodied nature of
cognitive and affective processes that span the
mind and body suggest that these fluctuations in
the 1/f pattern should be detectable from low level
bodily movements.

In what follows, we present two independent
sources of evidence for a correlation of 1/f patterns
and the affective states that are prevalent during
learning and problem solving. In the first study,
we monitored gross body movements by measur-
ing gluteal pressure on a seat during a complex
learning task. In a second and different source of
data we analysed the fluctuations of body move-
ment through video recordings of participants
engaged in a problem-solving task.

Figure 2. (A). Sample pressure map from seat of chair and (B) 1024 segment of a sample time series along with a randomly shuffled
surrogate (C). Spectral analyses for sample arousal and shuffled time series. (D). Correlations between fractal dimension (X-axis) and
relative duration of distress states in seconds (Y-axis). [To view this figure in colour, please visit the online version of this Journal.]
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STUDY 1

Method

Participants. Twenty-eight undergraduate stu-
dents (5 male and 23 female; 37% Caucasian,
56% African American, 7% ‘‘Other’’) from a large
university in the US participated for extra credit in
their psychology courses. Data from one partici-
pant was discarded due to experimenter error.

Interaction with AutoTutor. Participants inter-
acted with AutoTutor for 32 minutes on one of
three randomly assigned topics in computer
literacy: hardware, internet, or operating systems.
AutoTutor is a validated intelligent tutoring
system that helps learners construct explanations
by interacting with them in natural language with
adaptive dialogue moves similar to human tutors
(VanLehn et al., 2007). AutoTutor’s dialogues are
organised around difficult questions, such as why,
how, what if, what if not, how is X similar to Y, that
require answers involving inferences, explanations,
and deep reasoning. Although each question
requires 3!7 sentence-like ideas in a correct
answer, learners rarely give the complete answer

in a single conversational turn. Therefore, the
tutor scaffolds the construction of an answer by an
adaptive dialogue with pumps for information,
hints, prompts, assertions, summaries, and feed-
back. AutoTutor delivers its dialogue moves via an
animated conversational agent that speaks the
content of the tutor’s turns.

A video of the participant’s face and computer
screen was recorded during the tutorial session.
Gross body movement was tracked using Tekscan’s
Body Pressure Measurement System (BPMS).
The BPMS consists of a thin-film pressure pad
with a rectangular grid of sensing elements that is
enclosed in a protective pouch. Pressure matrices
(38"41) of participants’ gluteal pressure while
seated in a chair were recorded at 4Hz (see Figure
2A).

Judging affective states. Participants provided
self-judgements of their affective states immedi-
ately after the tutorial session; learning activities
during the session were not interrupted. Similar to
a cued-recall procedure (Rosenberg & Ekman,
1994), the judgements for a learner’s tutoring
session proceeded by playing a video of the face
along with the screen capture video of interactions

Figure 3. Sample output of the motion tracking algorithm. Panels A and C represent single frames extracted from a video sequence, while
panels B and D show the output of the motion tracking system. In Panel B, with the exception of the eyes, the body is motionless. In contrast,
there is significant motion in the face and body as evident in Panel D. It is important to note that background noise (i.e., the patterns on the
walls and ceilings) have been correctly filtered out in both cases. Panel E shows a 1024 segment of a sample time series. Its randomly shuffled
surrogate appears in Panel F. [To view this figure in colour, please visit the online version of this Journal.]
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with AutoTutor on a dual-monitor computer
system. The screen capture included the tutor’s
synthesised speech, printed text, students’ re-
sponses, dialogue history, and images, thereby
providing the context of the tutorial interaction.

Participants were instructed to make judge-
ments on what affective states were present at any
moment during the tutoring session by manually
pausing the videos. They were also instructed to
make judgements at each 20-second interval
where the video automatically stopped. This
permitted both fixed (every 20 seconds) and
continuous (at any time) ratings. Participants
were provided with a checklist of seven states
(boredom, flow/engagement, confusion, frustra-
tion, delight, surprise, and neutral) for them to
mark. Hence, judgements were made on the basis
of the participants’ facial expressions, contextual
cues via the screen capture, and the definitions of
the states (always present on the coding sheet).

Mean proportional occurrence of the states
were: boredom (0.160), confusion (0.180), flow/
engagement (0.199), frustration (0.114), delight
(0.032), surprise (0.027), and neutral (0.288). The
dependent affect measure for the present analysis
was the duration (in seconds) of each state. This is
calculated as the average (for each participant and
each state) time difference between the onset of a
state and transition into another state. This
average time score for a state, such as confusion,
would reflect the period of time during which a
participant is continuously experiencing that state.

Results and discussion

The analyses proceeded by constructing a time
series for each learner, where each point repre-
sented the absolute magnitude of change in
average gluteal pressure across two adjacent points
(Figure 2B). This provides a measure of move-
ment in the time series. The structure of noise in
the time series was estimated using power spectral
and standardised dispersion analyses, which are
standardised procedures for estimating the 1/f
signal and are specified in Holden (2005). The
power spectral analysis yields a spectral slope
relating frequency and amplitude in the bodily

fluctuations (Figure 2B). Based on the slope, one
determines if the underlying time series is con-
sistent with fractional Gaussian noise (i.e., white
or pink noise). The dispersion analysis returns a
fractal dimension that should correlate with the
spectral slope. This fractal dimension yielded by
the dispersion analysis provides a more reliable
estimate of the structure of noise in the time series
(Van Orden et al., 2003), so it is taken as the
primary dependent measure in the subsequent
analyses.

It should be noted that a number of metho-
dological issues arise when estimating 1/f patterns
in a natural time series (e.g., effects of detrending,
aliasing, problems when time series are bounded
by lower limits, etc.; see Wagenmakers et al.,
2004, for a discussion). It is beyond the scope of
this article to explicitly address these issues,
however, these concerns are addressed by the
methodology proposed by Holden (2005) and
adopted for the present analyses.

Idealised 1/f pink noise produces spectral
slopes of !1 whereas idealised white and brown
noise have spectral slopes of 0 and !2, respec-
tively (Holden, 2005). Natural systems rarely
provide estimates that correspond to idealised
pink noise (i.e., spectral slopes of !1). In most
cases, estimates from natural time series lie
between some of these idealised boundaries. For
example, Van Orden et al. (2003) reported a mean
spectral scope of !0.66 in a time estimation
experiment. This slope was considered to be
consistent with 1/f noise since it significantly
differed from white (slope"0) and brown
(slope"!2) noise, and randomly shuffled sur-
rogates of the time series essentially yielded white
noise. We adopted a similar procedure in order to
identify the structure of noise in our time series of
bodily fluctuations.

The spectral analyses revealed negative spectral
slopes corresponding to pink or 1/f noise,
M"!0.631, SD"0.114 (see Figure 2C).
One-sample t-tests confirmed that the slopes
were significantly (pB.01, unless specified other-
wise) different from both 0 (white noise),
t(26)"28.9 and from !2 (brown noise),
t(26)"62.7. Dispersion analyses independently
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confirmed the discovery of pink noise by yielding
a mean fractal dimension (FD) of 1.34
(SD!0.038). One-sample t-tests indicated that
the fractal dimension was significantly different
from brown (FDB1.2), t(26)!18.7, and white
noise (FD:1.5), t(26)!27.2. The FD reliably
correlated with the spectral slope estimates
(r!.781). As would be expected, randomly
shuffled surrogates of the time series produced
white noise; i.e., spectral slopes (M!"0.010,
SD!0.031) were not significantly different from
0, t(26)!1.69, p!.05, and the fractal dimen-
sions (M!1.51, SD!0.023) were not signifi-
cantly different from 1.5, t(26)!1.46, p!.05
(see Figure 2C).

After examining the data for outliers and
determining that there were no problems, correla-
tions across participants were computed between
the fractal dimension and the duration of each
affective state (see methods section). There were
significant correlations with the fractal dimension
for confusion (r!.519, p!.006) and frustration
(r!.437, p!.033), but not any of the other
states.

Ideal pink noise has a FD of 1.2 while the FD
of white noise is 1.5. Hence, this pattern of
correlations indicated that body movement fluc-
tuations of individuals experiencing cognitive
equilibrium (boredom, flow/engagement, neutral)
were characteristic of the correlated pink noise
that is expected from self-organising systems
showing stable interaction-dominant dynamics
(FD01.2). However, the experience of confusion
and frustration was associated with fluctuations in
body motion that are consistent with more
disorder in the system, as the FD tends towards
white uncorrelated noise (FD01.5).

In order to facilitate the subsequent analyses,
we computed a cognitive distress score by averaging
each participant’s confusion and frustration dura-
tion scores (i.e., average duration of episodes of
confusion and frustration). Although a factor
analysis would have been more appropriate, the
small sample size causes complications for dis-
covering robust factors. Nevertheless, the distress
score positively correlated with the fractal dimen-
sion (r!.529, p!.005; see Figure 2D), indicating

that confusion and frustration, two states that are
associated with cognitive distress, are accompa-
nied by a whitening of the body-fluctuation
signal.

There is the important question of whether the
fractal dimension, a rather complex measure of
bodily fluctuations, provides additional insights
into bodily expression of affect over simpler
measures such as the amount of moment or
variability of movement. This question was ad-
dressed with a partial correlation between FD and
distress score after controlling for the magnitude
(mean of each time series) and variability in
movement (standard deviation of each time
series). The results yielded a significant relation-
ship between FD and the distress score (r!.585,
p!.002) indicating that the movements of in-
dividuals who experience cognitive distress cannot
be simply attributed to the magnitude or varia-
bility in movement, but rather less fluid and less
predictable motions (i.e., the shift from pink to
white noise).

It is important that these patterns be replicated
before we put too much stock in interpreting
them. Study 2 replicates these findings in a
different domain (solving analytical reasoning
problems), with a somewhat different population
(aspiring law students), and a different method to
track gross body movement (motion filtering via
cameras).

STUDY 2

Method

Participants. These were 41 undergraduate stu-
dents who were enrolled in a preparatory course
for the Law School Admissions Test (LSAT).
There were 26 females (63%) and 15 males (37%).
Of these, 78% were Caucasian and the remaining
22% were African American. All of the partici-
pants indicated that they were interested in
attending law school and were paid $30 for their
participation.

Procedure. The participants were isolated in a
room where they solved 28 difficult analytical
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reasoning problems from the LSAT for 35
minutes. A software program on a Tablet PC
delivered the questions, monitored their re-
sponses, and provided feedback (i.e., ‘‘Correct’’
or ‘‘Incorrect’’).

Two streams of information were collected
during the interaction session. First, the partici-
pant’s face and upper body were recorded with a
webcam. A video of the participant’s screen was
also recorded using a screen capture program
(Camtasia StudioTM).

A larger set of affective states (anger, anxiety,
boredom, contempt, confusion, curiosity, disgust,
eureka, fear, frustration, happiness, sadness, sur-
prise, and neutral) were tracked via a retro-
spective judgement protocol after the problem-
solving phase. The states were tracked at points
halfway between the presentation of the problem
and the submission of the response. We selected
these centre points in order to capture their states
while participants were in the midst of active
problem solving. Mean proportional scores for
the six most frequent states were confusion
(0.135), frustration (0.071), curiosity (0.186),
boredom (0.115), anxiety (0.043), and neutral
(0.363). These remaining eight states comprised
a mere 8.7% of the observations, hence, the
subsequent analysis focuses on this set of six
frequent states. Since affective states were not
obtained at fixed intervals (as in Study 1), the
dependent variables for the subsequent analyses
were simply proportional scores associated with
the six frequent states.

Participants’ gross body movement was mon-
itored from the videos of the face and upper body
via a motion-filtering algorithm. The algorithm
computes the amount of motion in a given frame
Ft by measuring the proportion of pixels in Ft

that have been displaced (i.e., motion is greater
than a predefined threshold) from a moving
background model constructed on the basis of
N earlier frames (see Figure 3A!D; N"4 for
present analysis). The proportion of pixels with
motion provides an index of the amount of
movement in each frame. Similar to Study 1, a
time series was constructed by computing the

absolute magnitude of change in motion across
two adjacent frames (Figure 3E!F).

Results and discussion

The spectral analyses revealed negative spectral
slopes corresponding to pink or 1/f noise,
M"!0.697, SD"0.091. One-sample t-tests
confirmed that the slopes were significantly
different from both 0 (white noise), t(40)"48.7
and from #2 (brown noise), t(40)"91.1. Dis-
persion analyses independently confirmed the
discovery of pink noise by yielding a mean fractal
dimension (FD) of 1.30 (SD"0.033). One-
sample t-tests indicated that the fractal dimension
was significantly different from brown
(FDB1.2), t(40)"19.9, and white noise
(FD:1.5), t(40)"38.3. The FD reliably corre-
lated with the spectral slope estimates (r".394,
pB.05). As would be expected, randomly shuffled
surrogates of the time series produced white noise;
i.e., spectral slopes (M"0.005, SD"0.017) were
not significantly different from 0, t(40)"1.89,
p!.05, and the fractal dimensions (M"1.50,
SD"0.015) were not significantly different from
1.5, t(40)"1.68, p!.05. The overall pattern
replicates the finding from Study 1 that the
fluctuations of body movements is consistent
with 1/f noise.

The fractal dimension significantly correlated
with occurrence of anxiety (r".552, pB.001),
confusion (r".320, p".042), and frustration
(r".333, p".033), but not for boredom, curios-
ity, and neutral. A cognitive distress score was
computed by averaging proportional scores for
anxiety, confusion, and frustration. The distress
score significantly correlated with the fractal
dimension (r".516, pB.001) and a partial
correlation between FD and the distress score
after controlling for the magnitude (mean of each
time series) and variability in movement (standard
deviation of each time series) was significant
(r".415, p".009). This replicates our earlier
finding that affective states associated with cog-
nitive distress are related to greater whitening in
bodily fluctuations.
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GENERAL DISCUSSION

The century-long endeavour devoted to discover-
ing the physiological and bodily correlates of
emotions has yielded some important findings
on the embodiment of affect. However, the
majority of the research has focused on emotional
correlates such as facial action units, acoustic
parameters, and physiological measures such
as electromyography and electrocardiography
(Russell et al., 2003). In our view, the discovery
of systematic co-variation between the dynamics
of bodily movement and the experience of cogni-
tive distress represents a significant advancement.
Although facial expressions are considered to be
strongly associated with affective expression,
meta-analyses on correlations between facial ex-
pressions and self-reported emotions have yielded
small to medium effects for spontaneous expres-
sions (Camras & Shutter, 2010; Fridlund et al.,
1987; Ruch, 1995; Russell et al., 2003). In
contrast, the reported correlations between the
fractal dimension and aggregated scores of cogni-
tive distress were consistent with large effects.
Although these results warrant replication, we
have some confidence in the generalisability of our
findings because the patterns were observed in
two studies with different populations of students,
different tasks, and different methods to track
body movements. We also selected tasks that had
some real-world relevance and methodologies
with limited experimenter control thereby yield-
ing naturalistic expressions of spontaneous affec-
tive states.

While latent models of emotion posit that
affect programmes trigger physiological, beha-
vioural, and phenomenological changes (Coan,
2010), our finding that patterns in bodily fluctua-
tions correlates with cognitive-affective states
further supports the notion of mind!body cou-
pling as a self-organising process with non-linear,
chaotic, interaction-dominant dynamics (Kello
et al., 2007; Van Orden et al., 2003). The
discovery of pink noise in itself is not surprising
because it is routinely (though not always)
observed in systems with complex dynamics
(Van Orden et al., in press). What is novel and

interesting, however, is that states consistent with
cognitive distress were associated with a whiten-
ing of the body movement signal as the self-
organising system changed. Some have argued
that these patterns of organisation and disorgani-
sation reflect emerging cognitive ‘‘structures’’ that
may have diverse computational properties (Ste-
phen, Dixon, & Isenhower, 2009). For example,
Stephen and colleagues (2009) found that distinct
patterns of disorganisation occur in transitions
between two solutions to a problem. Such a
finding is consistent with our data here. Under
normal conditions the interaction dominant dy-
namics yield the characteristic 1/f signal, so
movement away from the 1/f signature can reflect
significant changes in that system. This change is
observed in participants experiencing anxiety,
confusion, and frustration who exhibit whole-
body signals that reflect a greater disorganisation
of the overall cognitive system.

It is important to align the present findings
within some of the complex systems approaches to
emotion (Camras & Shutter, 2010; Camras &
Witherington, 2005; Coan, 2010; Lewis, 2005).
Dynamical theories of emotion conceptualise
emotions as emergent attractor states that trajec-
tories converge upon when the cognitive-affective
system is perturbed by an internal or external
event. The attractor landscape and the control
parameters that modulate the dynamics of the
system are ostensibly organised based on past
experience, affective traits, social constraints,
developmental changes, and a host of other factors
(Camras & Shutter, 2010). One can envision an
attractor for anger, anxiety, frustration, and so on,
each tightly coupled to an individual’s past
experiences and evolutionary niche in the envir-
onment. Although the present results support the
notion of cognitive-affective states causing and
being caused by (circular causality; Lewis, 2005)
complex dynamical interactions between loosely
coupled entities, we do not claim that we have
discovered an attractor for anxiety, confusion, and
frustration. For example, we do not expect to be
able to distinguish between confusion and anxiety,
at least based on the current 1/f data. Instead, the
present view is more aligned with dimensional
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rather than categorical models of emotion, and
makes the modest contribution of showing that
there is systematic covariation between the ex-
perience of negative states which are diagnostic of
cognitive distress and the body’s ability to self
organise (i.e., shifts from pink to whiter noise). A
critical next step of this research is to test causal
links between emotional states and bodily fluctua-
tions in order to uncover the dynamical signature
of specific discrete emotions.

We would also like to address potential con-
cerns with the present methodology. This retro-
spective affect judgement methodology was
adopted because it affords monitoring partici-
pants’ affective states at multiple points, with
minimal task interference, and without partici-
pants knowing that these states were being
monitored. Although this affect judgement meth-
od has been previously used (Rosenberg &
Ekman, 1994), produces similar distributions of
states as online methods (Craig, D’Mello,
Witherspoon, & Graesser, 2008), and the affec-
tive labels obtained correlate with online record-
ings of facial activity in expected directions
(D’Mello & Graesser, 2010), there is the concern
that showing participants videos of their faces
might have introduced some methodological
artefacts. The concern stems from the possibility
that participants could have inferred their bodily
motions from the videos of their faces and based
their judgements on these bodily movements.
This is an unfortunate complication that is
difficult to mitigate because it is difficult to
automatically segregate facial movement from
general body movement. We would argue though
that it is quite unlikely that participants could
have perceived variations in the 1/f patterns,
guessed our hypotheses, and selected their judge-
ments accordingly. In addition, 1/f signals inher-
ently require lower amplitudes of movement at
high frequencies that would unlikely be system-
atically detected by simply eyeballing a video
stream.

It is tempting to speculate on the exact nature
of the bodily movements during the experience of
these complex mental states. Are the movements
simply more pronounced, jerky, and less fluid

during periods of cognitive distress and subtle,
smooth, and calm during normal cognitive func-
tioning? Although we are hesitant to reduce the
complex nature of the bodily movements to these
common descriptions, it is important to point out
that the movements of individuals during cogni-
tive distress cannot be simply attributed to greater
movement (mean of each time series) or larger
variability in movement (standard deviation of
each time series). Hence, it is not the magnitude
or variability of bodily movements, but a shift in
the structure of these movements that best explains
these correlations.

This disruption in the body’s ability to stabilise
self-organising dynamics during periods of cogni-
tive distress (confusion, frustration, and anxiety) is
consistent with classical Piagetian theory of
intellectual development (Piaget, 1952) as well
as more contemporary theories that postulate that
these states are diagnostic of cognitive disequi-
librium (D’Mello & Graesser, in press; Rozin &
Cohen, 2003). Cognitive disequilibrium is a state
that occurs when individuals face situations such
as obstacles to goals, contradictions, incongruities,
anomalies, and conflicts. Cognitive equilibrium is
hopefully restored after thought, reflection, and
other effortful cognitive activities. Failure to
restore cognitive equilibrium, hopeless confusion,
repetitive failure, and persistent blocking of goals
leads to frustration, and perhaps even anxiety if
the failure is viewed as a threat (as in the case of
the aspiring law school students).

In summary, we have shown that the fractal
signature of presumably unconscious bodily move-
ments can predict individual differences in the
experience of affective states such as confusion,
frustration, and anxiety. Simply put, disequili-
brium in the mind, such as the states associated
with cognitive distress, is accompanied with
disharmony in the body, manifested in a shift
from correlated pink noise to unstructured white
noise. The dynamics of high-level cognitive states,
along with their moments of confusion, frustra-
tion, and anxiety elusively concealed in the mind,
may very well be exposed in the subtleties of body
movement.
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