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The challenges posed by the composite nature of sense-making encourage us to study how that com-
posite is dynamically assembled. In this paper, we consider the computational underpinnings that drive
the composite nature of interaction. We look to the dynamic properties of recurrent neural networks.
What kind of dynamic system inherently integrates multiple signals across different levels and modal-
ities? We argue below that three fundamental properties are needed: dynamic memory, timescale
integration, and multimodal integration. We argue that a growing area of investigation in neural net-
works, reservoir computing, has all these properties (Jaeger, 2001). A simple version of this model is then
created to demonstrate “emergent meaning,” using a simplified model communication system.
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1. Introduction

In a classic paper of cognitive science, Herbert Simon (1992) asks
us to imagine a situation in which people are having a conversa-
tion: three women in a Singapore cafe, speaking casually in Tamil.
One of them has the floor, and is vibrantly sharing details about her
prior day. She gestures actively, shifts social gaze, and modulates
her vocal system to render sounds. Simon asks us to consider what
it would be to “explain” this scenario. There are many ways to
answer this question. One way is to explain how linguistic behavior
is operating in this context. In this language-centered approach, a
critical piece of an explanation is the “meaning” conveyed between
interlocutors. The speaker and listeners understand each other,
somehow. If the conversation is going right, then the speaker is
“making sense.”

“Sense-making” is often used as a technical term by some the-
orists of language, communication, and social systems (e.g., Di
Paolo, 2005). It has been used to describe the complex and dy-
namic process of communicating in context (De Jaegher & Di Paolo,
2007; Tyl�en & Allen, 2009). This is the sense of “sense” that we
mean in the title of this paper. Sense-making is a process, a rich kind
of meaning that humans create together. Beyond words, beyond
tion, Rolfe Hall, University of
sentences, there's a complex co-creation taking place when two
people talk. Humans speak or gesture (or both) to gain attention,
identify joint goals, develop a plan, issue instructions, inform one
another, and more.

This is a process of great complexity, because language perfor-
mance unfolds on many different levels. Consider natural spoken
language, as in Simon's imagined vignette. When talking, humans
linearize sounds into patterns, reflecting what cognitive scientists
approximately describe as “words” and “sentences” and “topics of
conversation.” At the same time, humans often utilize an array of
non-verbal tools. As sounds are assembled, gestures render
emphasis or structure conceptualization. Humans use social gaze to
maintain attention of their conversation partner, or to track it in
case something goes awry. The sounds themselves are subject to
modulation. Loudness, frequency, and speech rate may all be
modulated on any word or phrase to change emphasis, or win back
some attention.

By Enfield’s (2013) description, language performances are
radically composite:

“A typically multimodal, multidimensional utterance will consist of
numerous signs in a unified composite, e.g.,words andmorphemes,
some morphosyntactic arrangement of these, some configuration
of the hand, some movement of the arm in a certain direction and
at a certain speed, some deployment of the artifactual environ-
ment, and much more besides.” (Enfield, 2013, p. 65)
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This compositeness is sometimes, with justification, ignored. For
example, in one influential tradition in the language sciences, it is a
methodological convenience to investigate these levels separately.
This tradition, at least in some sectors of cognitive science, remains
the dominant approach. It inspired a whole generation of cognitive
scientists who assume these processes are independent and strictly
encapsulated d traditional “modules.” Such a simplifying
assumption licenses a useful but narrow focus. This focus has no
doubt revealed important properties of many processes.

Yet the signals that make meaning “composite” occur in rapid
sequences, and often simultaneously, during language perfor-
mance. To put it simply: Cognitive scientists may have the luxury of
modularity, but the human performer does not. In matters of mil-
liseconds, the brain-body-environment system must work with a
wide array of signals. These signals are weaved together into one
coherent performance. If they are not weaved quickly and coher-
ently, sense-making fails, or leads to unintended consequences. So
how do humans do it? How do humans make sense?

The challenges posed by the composite nature of sense-making
encourage us to study how that composite is dynamically assem-
bled. In this paper, we consider the computational underpinnings
that drive the composite nature of interaction. We look to the dy-
namic properties of recurrent neural networks. What kind of dy-
namic system inherently integrates multiple signals across
different levels and modalities? We argue below that three
fundamental properties are needed: dynamic memory, timescale
integration, and multimodal integration (Dale, Kello, &
Schoenemann, 2016). We argue that a growing area of investiga-
tion in neural networks, reservoir computing, has all these prop-
erties (Jaeger, 2001, p. 13). We showcase a simple reservoir
computing model to demonstrate “emergent meaning,” using a
highly simplified “toy” communication system. It reveals the
emergence of multi-level statistics. The model is a kind of existence
proof, showing that even simple systems that have the right kind of
multiscale dynamics can accommodate a simplified form of multi-
level structuring seen in language.

In the next section, the concept of multiscale and multimodal
dynamics is summarized in more detail. Here we develop key re-
quirements that, we argue, are needed for a cognitive system to
sustain a complex performance such as sense-making. Following
this, we introduce reservoir computing and describe a simplified
simulation that illustrates multiscale dynamics.

2. Cognitive desiderata: multiscale, multimodal dynamics

Let us revisit the hypothetical scenario from the Introduction.
Herbert Simon offered a hypothetical cognitive analysis of his
imagined human interaction (Simon, 1992), in which one person is
speaking Tamil vibrantly to others. Simon asks what it is to “explain
her behavior.” There are many ways to answer this question. One
could ask, as Simon does, why Tamil and not some other language?
Why in that cafe and not in some other cafe or even another city or
country? This more distal explanatory question may be the subject
of anthropology and cultural history, or simply the series of coin-
cident events unique to this person (the so-called “social band”
timescale: Newell, 1992).

A cognitive scientist may seek an answer from studying how she
is speaking. What gestures are useful for her to convey meaning?
How does she organize her eye movements? What words is she
choosing and what emotional tone is she conveying? This more
intermediate timescale is based on principles of cognitive mecha-
nism and process (Newell's “cognitive band”).
There is of course a timescale finer than this. Imagine tracking
her brain activity during the conversation. Using functional con-
nectivity analysis, one could investigate the neural circuits that
seem to be involved in conveying a word, or a phoneme. The sci-
entist could investigate how this circuit is modulated by the context
around her, such as other words or the behaviors of her in-
terlocutors. Here is a process at the scale of milliseconds (Newell's
“neural band”).

All of these are possible routes to an “explanation.” They also
exemplify the problem of multiscale dynamicsd the speaker must
organize her behavior at different timescales in rather systematic
ways in order to succeed. Sounds must weave into words which
must weave into sentences which, of course, are presented in ways
more or less culturally and contextually licensed.

Timescales are not the only way in which language is complex,
however. In the face-to-face context, humans coordinate a whole
suite of multimodal signals to support meaning (e.g., Louwerse,
Dale, Bard, & Jeuniaux, 2012). There are many areas in the lan-
guage sciences that emphasize this multimodal structure. Such a
review is outside the scope of the present summary. It is, for the
present purposes, a granted premise that natural language involves
such a suite of signals.Whywould humans usemultimodal signals?
Imagine again this conversation in Singapore that Simon envisions.
The speakers are gesticulating to highlight certain conceptual
structures, sequencing social gaze in a manner meant to maintain
and track attention, modulating voice in ways to convey affect or
emphasis, and so on d and in fact she may be combining them in
coherent ways to lend greatest emphasis.

So Simon's hypothetical speaker can be explained at different
timescales, and through a variety of seemingly different d but
combined d processes. The first property reflects multiscale orga-
nization, and the second multimodal organization. What kind of
cognitive system supports multiscale and multimodal dynamics?

From classic approaches to meaning in language, we might
simplify the problem and begin our analysis at the word. The
simplification is valuable. The focus on word meaning reflects a
fundamental importance of the lexical level of analysis. Building
discourse systems for combining these words has also led to much
progress. This has been especially useful in building systems for
multimodal discourse generation (e.g., Kopp et al., 2006) and other
automated interactive systems (e.g., Graesser, 2011). But to gain a
more complete explanation of Simon's anecdote, given the sheer
complexity that sense-making involves, we need more.

Consider, for example, processes that even extend beyond the
individual cognitive agents themselves: the environment in which
they are communicating. The environment can support events that
take place at a longer timescale. Simon's conversational scenario is
illustrative once again. The very fact that the same people will be
sitting across from our imagined speaker over many minutes
means that the environment can supportmemory for the social and
perhaps even topical landscape of the conversation (Spivey,
Richardson, & Fitneva, 2004).

In this paper, we choose to focus on the relevant “internal”
cognitive mechanisms: We consider neural computation that
supports multiscale and multimodal processing. Cognitive science
has long involved a strong influence of so-called “internalism,” the
view that the locus of explanation for cognition is inside the indi-
vidual. Despite the continued debate about internal vs. external
features to explain the mind, we take for granted here that
exploring dynamics of a model system provokes useful questions.
Whatever one's perspective on this ongoing theoretical debate, the
human brain is certainly a critical component in this multiscale,
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multimodal system.1

So what are the needs of cognitive dynamics in supporting
sense-making? We present three desiderata here. We do not claim
that these are fully sufficient for linguistic meaning, but they do
seem to be, at least, necessary conditions: (i) dynamic memory, (ii)
timescale integration, and (iii) multimodal integration.

2.1. Cognitive desideratum: dynamic memory

A “sense-making” system fundamentally involves activities and
processes that unfold over time in an organized fashion (De Jaegher
& Di Paolo, 2007). In addition, a sense-making system needs to
sustain its processes over various timescales. Research on language
and memory finds that we can tax our memories when related
words are spanned too distantly within sentences (e.g., Gibson,
1998). Memory is taxed when we consider anaphora, in which
subtle cues such as “he” or “she” or “they” mark a prior mention
that can span several sentences. But overlaid upon this is a suste-
nance of topic that must work to have coherent sense-making.
Humans preserve a sense of a goal of their conversation, and
maintain a topic across an entire exchange, which could last many
minutes. A dynamic memory must be able to rapidly introduce
structure, hold it in abeyance, and potentially return to it, over the
course of seconds and minutes and perhaps even longer.

2.2. Cognitive desideratum: timescale integration

Dynamic memory is not itself enough. The processes supporting
that memory need to be temporally integrative across a range of
timescales relevant to language and communication. Words, when
chosen, fit inside some broader topic of conversation. Sounds must,
of course, be initiated and situated within a particular context and
performance envelope to work. Sentences must be dynamically
introduced that recognize prior mentions, and introduce new in-
formation to keep interaction flowing. The most cognitively
expensive way of doing this integration is to compute each step
independently, and then put them together afterwards, keeping a
track to make sure errors are not made. Slightly less computa-
tionally costly is to build up from sound to meaning, in a serial
order of construction. An evenmore efficientmeans of doing all this
is to constitutively integrate d the processes are not computed
independently, but interdependently. We give a further example of
what we mean by this below, but the general problem is this:
Processes at varied timescales must make sense relative to one
another, they must rapidly (and sometimes simultaneously) obey
structured and potentially predictive relations to sustain natural
language usage (Pickering & Garrod, 2013).

2.3. Cognitive desideratum: multimodal integration

Finally, integration must also occur across “space” as well as
time. In terms of face-to-face interaction, the elements in space
concern the observed behaviors that are integrated into the per-
formance itself: gestures, eye gaze, and so on. These disparate
1 Despite strong claims to the contrary (e.g., No€e, 2009), there are many reasons
for exploring internal processes, even when admitting the structuring role of body
and environment in the previous paragraph. Injury to the nervous system can
systematically alter cognitive processing, and conversation clearly illustrates this. It
is known that certain brain damage can result in a loss of capacity to track the
conversation and even the prior identity of a conversation partner when, for
example, a conversation partner in Simon's scenario steps away for even less than a
minute (Squire & Wixted, 2011). This is not to say that these brain areas are the
“seat” of such processes; but they are obviously critically involved in them (cf.
Yoshimi, 2012).
signals serve valuable functions in sense-making. A subtle gaze in
one direction, rather than another, can mark blame or concern or
some other conversationally significant intention (cf. Langton,
Watt, & Bruce, 2000). This multimodality is central to our pri-
mary mode of making meaning in face-to-face contexts. When it is
dampened it can seem odd or distracting (Kuhlen& Brennan, 2010).
Getting it right matters. This is more than saying simply that con-
versation is embodied. The term “modality” can stand in for a va-
riety of processes, beyond the standard sensors and effectors that
the term “multimodal” connotes. Affective charge of a sentence can
be considered a kind of modality, which could be resolved into two
separate dimensions itself, such as valence and intensity. In short,
the system must be capable of integrating diverse signals across
and within timescales.

In the next section, we describe a computing system that can
satisfy these desiderata. Reservoir computing emerged in the early
2000's, and is an already influential paradigm for modeling dy-
namic systems of various sorts. The construction of a reservoir
computing system can be quite simple, and yet yield results that
inform complex phenomena like sense-making.

3. A primer on reservoir computing

Reservoir computing is a style of neural network modeling. These
models can be surprisingly effective as learning devices, even with
few theoretical commitments on the structure of the nervous sys-
tem itself or how it learns. They require some basic assumptions of
nonlinear dynamics in a “reservoir” of neurons, and a statistical
method for extracting memory and computation from those neural
dynamics. The reservoir is, from a certain vantage point, simply a
random assemblage of neurons that activate and deactivate as in-
puts impinge upon the network over time. The reservoir is
“recurrent” because its neurons are connected to each other, and
this recurrent connectivity can support a self-sustaining dynamic of
activity within the reservoir.

Reservoir systems of the kind we introduce here have two
properties that distinguish them from more traditional neural
network modeling. One is that the connections among neurons in a
reservoir are not adjusted by any kind of learning mechanism. The
connections are typically randomized at the start of a simulation,
and activation of their neurons flows across the system. The second
property derives from how those initial random connections are
made. Under particular rules for the random initialization, the
reservoir networks have an “echo state” property, in that activation
flows over the network continually evenwhen it is not “perturbed”
by external input (see the Appendix).

The computational implications of a reservoir's connectivity are
critical here. The structure provided by even random inter-
connectivity and the way activation flows over neurons has a time
signature that can be used for computation. These architectures can
solve some classic problems in cognitive modeling, such as the XOR
problem (Plunkett & Elman, 1997), which we describe further
below. They can also solve more applied problems such as aspects
of speech recognition and locomotion (Caluwaerts, D'Haene,
Verstraeten, & Schrauwen, 2013). Reservoir computing also raises
interesting questions about the emergence of cognitive processes,
including crucial processes like linguistic recursion (Frank, 2006),
which we consider further below, and which has figured centrally
in linguistic theory.

There are two general classes of reservoir computing system,
with subtly distinct histories (see Jaeger, 2007). Whether a network
is in one class or another depends on how its model neurons are
programmed. This is beyond the scope of the present discussion,
but we include an Appendix that describes these two classes, and
offers more details about the version we develop here. For the



Fig. 1. Left: A basic reservoir computing system, referred to as an “echo state network.”
The network receives input (u(t)) into the reservoir (x(t)), which has a flow of acti-
vation over a bank of neurons. These activations feed into an output y(t) (along with
the input pattern itself), and the connections at the output (dotted line) are trained.
Right: An example model implemented to solve a task. In this case, we use 20 reservoir
neurons and two inputs (truth/falsity of two propositions) to solve the XOR problem at
the output (one neuron).

R. Dale, C.T. Kello / New Ideas in Psychology 50 (2018) 61e7264
present primer, we discuss the essential ingredients of reservoir
computing. To begin, let's consider the way a reservoir system is
constructed, and how it handles a classic assay of neural network
performance, the XOR problem.

3.1. Structure of a reservoir system

Like all neural network models, a reservoir computing system
takes a pattern of activation as its input, and transforms it to pro-
duce outputd another pattern of activation over simple simulated
neurons. In reservoir computing, this transformation has two steps.
First, the input pattern of activation is fed into the “reservoir,” a
large network of randomly connected neurons that are iteratively
influencing each other, time and time again. The reservoir is
allowed to “run,” and in many cases can be said to have its own
intrinsic dynamics: Activation flows across the network continu-
ally, even when it is not perturbed by input. The reservoir is thus
intrinsically recurrent. The interesting bit is what happens when
the input is presented to the networkd the reservoir is influenced,
and its dynamics change.

The reservoir's neurons are connected to a set of output nodes,
or a “readout.” These connections, from reservoir to output, are the
only ones modified during learning. The reservoir's internal con-
nections to itself, in most studies, are not trained. They are initial-
ized once and remain unchanged throughout a given simulation.
The random structure, and the flowof activation, is enough to instill
a generic memory in the reservoir dynamics that can be used for
learning at the output d in other words, reservoir dynamics carry
their history forward in time. This memory permits the network to
learn about patterns sequentially presented in the input, without
any special assumptions about the internal structure of the system
at all. An illustrative reservoir system is portrayed in Fig. 1, left.

3.2. Dynamics of a reservoir system

To understand how random connections can facilitate process-
ing of information, consider the case of a simplified reservoir sys-
tem for computing the XOR logical operator, shown in Fig. 1, right.
This is a classic task that revealed the limitations of certain classes
of neural networks (Plunkett & Elman, 1997). XOR or “exclusive or”
is simply a function that takes two propositions, and returns true if
only one proposition at the input is true (not both, or neither). The
function is used as an assay of neural network learning because it
requires a nonlinear division of the input space.

The full account of training this reservoir system is described in
the Appendix, and is based on a thorough introduction to the
modeling framework found in Luko�sevi�cius (2012). To train the
network, we first present an input pattern, such as proposition 1 as
true and proposition 2 as false. The XOR operator over these two
truth values should produce 1, because one (but not both) of these
propositions is true. After the input is presented to the reservoir, we
allow its dynamics to cycle, processing that perturbation (in Fig. 1,
right, we show this occurring k ¼ 20 times). The random connec-
tivity of the reservoir leads to distinct signatures, produced by this
input perturbation. These distinct signatures can then be correlated
with the desired output, using linear regression. After presenting
all such patterns to the network, many times, that correlation
technique results in a trained network that can now solve the
problem d using only random interconnectivity in the reservoir.

How does the network do it? The network uses a correlation of
the reservoir's dynamics with the desired output. Not all the res-
ervoir's neurons need be involved. As long as some cue is present in
the reservoir's activation pattern, then there are correlations to be
discovered. Because the reservoir's dynamics are nonlinear (they
are based on a complex flow across the network), they are capable
of “separating” solutions to the XOR problem. To find out what
signature the network is using, we can perform an analysis on the
reservoir's activities. We use principal component analysis (PCA) on
these 20 neurons. This analysis finds the dominant patterns of
variability that are driven by the input. Though it is outside the
scope of our simplified demonstration, it is important to note that
each principal component reflects a combination of neuron activ-
ities; the neurons that participate in a given XOR solution are said to
statistically “load” onto these components. By using PCA we obtain
a smaller number of components, and so we can visualize the
network's behavior to illustrate how it is separating the XOR
function results (true vs. false).

We extracted the two primary “components” or signatures that
correlate with the solutions to XOR. This is shown in Fig. 2. Because
the reservoir is dynamic, we can plot these two components over
time. This can be interpreted as a low-dimensional visualization of
the reservoir's dynamics that solve XOR. Fig. 2 shows the network
transitioning across its k ¼ 20 cycles from one region to another, in
a clear pattern such that “true” outputs from XOR are in one region
of this space, and “false” another.

This section serves as a general introduction to reservoir
computing. We implemented a well-known version of this model
(Jaeger, 2007; Luko�sevi�cius, 2012), and showed that it can imple-
ment a classic logical operator (XOR). The reservoir's dynamics
create a flow that produces distinct signatures which help the
model correlate the reservoir with the desired outputs. This was all
done without changing random weights on the reservoir d one
need only a certain kind of nonlinear flow to make it work.
Reservoir networks are different from simple recurrent networks
and other more traditional connectionist models because compli-
cated learning mechanisms like backpropagation are unnecessary.
Indeed, they need nothing more than linear regression to learn
nonlinear functions like XOR.



Fig. 2. PCA analysis in this particular model shows that components 5 and 3 are most
closely related to the XOR solution. These components are measures of the underlying
“signature” in the reservoir's dynamics. We can replot the dynamics of the reservoir on
these two components. The gray lines are the reservoir's dynamics, transitioning
across this two-dimensional signature. The numbers are points at which the network
was asked to solve XOR. A clear separation between solutions is observed, reflecting its
ability to identify “true” (1) or “false” (0) output of the XOR operator.
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How do reservoir networks help us formalize and examine
principles of emergent meaning? We apply this model to a simple,
toy language system in the next section, showing that with these
minimal commitments it can extract multiscale properties of a
simplified communication system.
4. Demonstration in a simple model of language processing

Reservoir computing entails integrative dynamics. Whatever
the structure of our input, a single reservoir of neurons integrates
that input, and changes its dynamics. The dynamics of the reservoir
generates signatures that can then be used at the output. An
interesting property of this system is that it can solve complex
dynamical problems. This is desideratum (i) noted above: Reservoir
computing systems have memory, in the sense of carrying their
history forward, by virtue of integrative, recurrent dynamics. In
addition, the reservoir resonates across multiple timescales. This
resonance is not demonstrated by the XOR problem because it does
not spanmultiple timescales. To show that reservoir computing can
also achieve desideratum (ii), we develop a simple example here, in
a toy communication system.

Elman (1990) used a simple grammatical system to present a
well-known recurrent network framework. It is common to use
simplified input to demonstrate the behavior of model systems. We
draw from this inspiration here, and demonstrate that the reservoir
computing architecture can also integrate timescales across three
levels. These levels are only represented in a highly simplified “toy”
fashion. Nevertheless, the network is easy to build and interpret,
and shows that it can solve desideratum (ii) above: timescale
integration from phonemes to words to topics. We do not address
desideratum (iii), multimodal integration, in the current simula-
tion, but return to it in the General Discussion.
4.1. Simplified language system

Our simplified model “language” generates a sequence of sym-
bols that feeds into a reservoir that is listening to a “monologue.”
The reservoir system predicts a series of inputs from someone
“talking” to it. If we take these symbols to be a simplified sound
system, we can consider the model to be an addressee predicting
sound to sound to sound as input unfolds. This is of course only one
side of dialogue, and it should be acknowledged that dialogue likely
has important properties that cannot be captured in such a
simplified simulation (cf. Pickering & Garrod, 2004). It will serve
our purposes here, however, because it will show that a single
model can satisfy the basic cognitive conditions described above.

Because we wish to represent multiple timescales, we created
input that has three levels of temporal organization: sounds, words,
and topics. These are, of course, just interpretive glosses on a highly
simplified structure. Nevertheless the structure does have three
layers of organization. These are shown in Fig. 3 below. On the left,
we represent these three layers of organization: 2 topics, 3 words,
and 5 sounds. Each topic is linked to two words (e.g., topic a is
linked to words i and ii; b to ii and iii). Each word itself invokes a
deterministic sequence of sounds. For example, word i, as shown, is
generated by activating three sounds: 1, 2, and 3. Topics, like
conversational topics, are “perseverative.” This system will tend to
stay on topic a if the prior word selected was in topic a. However,
there's a certain probability that it might switch to topic b.

The reservoir model will only “hear” the sounds of this toy
system. How we generate input is demonstrated in Fig. 3, right. A
probabilistic algorithm first chooses a topic (e.g., a), samples from
twowords (i or ii), then generates a sequence of sounds. At the next
time step, the “speaker” either stays on or switches from that topic,
with a tendency to remain in the same topic. Occasionally, the
speaker generates input to the network that “switches” topic (e.g.,
b). The speaker will then sample fromwords ii and iii, and will have
a tendency to linger on that topic again. We can generate a large
sequence of “sound” inputs from this toy system by running this
sampling procedure over many iterations.

4.2. Example simulation

We investigated whether the network shows emergence of
dynamic patterns, patterns that lie above the “sounds” input to the
network. Can the reservoir detect topics, and can we observe the
topic transitions in its dynamics, as we saw in the XOR case? In
addition, how are words “represented” in this system? Because
word ii is possible in both topic a and topic b, we would expect that
the reservoir's dynamics should recognize that word i and word iii
are the most semantically distant, while word ii represents a
“border” word, a semantically related sequence, that may reflect
transitions in both topic a or topic b.

4.2.1. Parameter settings
It is well known that this kind of reservoir system is sensitive to

the size of the reservoir, with the general observation that
computational power (in particular, memory span) corresponds
roughly with the number of neurons in the reservoir. We therefore
increased the reservoir size to 500 (though this global parameter
can vary without impacting results). Unlike the XOR model, we did
not “cycle” the reservoir for each sound presented (k ¼ 1, where for
XOR, k ¼ 20). We generated a sequence of approximately 1300 of
these sounds for training, using the rules specified in Fig. 3 (using a
probabilistic phrase-structure grammar interpreter: Dale, 2007).
These were converted into a pattern of activity, where a bank of
neurons would have one of its neurons activated (set to 1) for each
sound. The input was set to 0 for the inactive sounds. This is



Fig. 3. Left: The structure of the toy system, from topics to sounds. The gray lines show an example sequence of sounds being generated by choosing a topic, sampling a word, and
linearizing sounds. Right: An example sequence of input (sounds) being generated. The “hidden” variables of topic and word are not seen by the model, only the basis for generating
the sounds. Note that topics will tend to be preserved by some “stay” probability. With some “switch” probability, the topic will change from a to b (or vice versa). After a period of
time, the system ceases “talking” and generates a “end” marker, represented here by the hash character.
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depicted in Fig. 4. The task of the network, as seen here, is to predict
the next sound generated by the toy language model (Elman,1990).

Neurons in the reservoir have continuous activations ranging
from �1 to 1, and change in that range over time. All weights are
initialized randomly in the reservoir to be between �0.5 and 0.5.
The reservoir's weights are then scaled to ensure that the network
will reveal what is termed the “echo state” property. As noted
above, this property means that the network will not saturate (all
Fig. 4. The reservoir model for the simplified communication model is shown here. It
has the same structure as the prior models, with a few exceptions. It has more
reservoir neurons (500). It has 6 input and output nodes, which will be used to predict
“sounds” that are part of the simulated language input. There are 5 sounds, and a final
neuron that represents an end to the monologue. We generated thousands of sound
inputs in order to train the network to predict.
neurons constantly active) or die out (all neurons off). It has an
intrinsic, internal dynamic. More details on the configuration of the
network are described in the Appendix (including links to source
code).

4.2.2. Training of the model
The model is trained in precisely the same way as described

above, and inmore technical detail in the Appendix. The reservoir is
perturbed by the input, and we track the reservoir's dynamics.
These dynamics are then correlated using linear regression at the
output. This linear regression's coefficients are used to set the
weights (connections) from reservoir and input to output. This
statistical method picks up the signature of the reservoir's activa-
tions that successfully generate prediction.

4.2.3. Testing the model
In order to test how the model is performing, we constructed a

test sequence in which 21 sounds occurred in topic a (words i and
ii) then switched to topic b (words ii and iii), for 42 total time steps.
We again use PCA to assess how the reservoir's internal dynamics
are working. If these dynamics contain signatures of multiple
levels, then there should be components from the PCA, much like
the XOR demonstration, that separate topic and word, even though
the network is not receiving these as input. The dynamics of the
reservoir are integrating the sequences of “sound,” and these se-
quences give raise to signatures organized at larger timescales than
the sounds themselves.

4.2.4. Analysis of network behavior
By testing the model's predictions with regression, as described

above, we find that the model can predict the sequence of sounds
very effectively, but does it learn anything about the topic
sequence, and how words are related to each other in that topic
space? To check this, we ran a PCA analysis as we did for XOR. We
identified which components best predicted topic a vs. topic b, and
then observed the dynamics of the reservoir system for a test set of
sounds, when there is a transition occurring between topic a and
topic b. We plotted the reservoir's dynamics based on which
components best supported word prediction together with topic,
on the same kind of PCA plot to determine the relative relationship
betweenwords i, ii, and iii. If the network is detecting the topic and



Fig. 5. After training this model on approximately 1300 sounds from this toy
“monologue,” we present approximately 40 sounds, with the first 21 from topic a and
the next 21, after a switch, from topic b. The network starts in topic a (large square),
and shows a distinct dynamic as it processes the words, predicting a shift into topic b
(large circle).

Fig. 6. We extracted the dynamic signatures in the reservoir activations that best
predicted topic (x-axis) and word identity (y-axis). The neural network's readout can
predict sound-to-sound patterns by using the structure of activation through the two
higher-level patterns in the toy data set. Topic facilitates next prediction of sounds for
word i and iii. Word identity is organized around topic too; when the signature
(principal component) for topic is high, suggesting topic a, then the network predicts
both words ii and iii, and does so by using the second dimension shown on the y-axis.
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word semantics, then we should observe a distinct clustering
within that PCA space, as we saw for the XOR solution.
2 There is an important simplification to note here. “Strength” is used as a
convenient stand in for “variance.” Principal components are ordered by the vari-
ance in the reservoir data that they account for. This does not mean that principal
component one is necessarily more impactful. It depends on how those compo-
nents relate to other factors and measures of performance.
4.2.5. Results
Fig. 5 shows the PCA results for one iteration of our toy simu-

lation. Principal components 1 and 8 reflect the dynamic signatures
in the reservoir that most strongly correlatewith the network being
in topic a or topic b. It is important to note that the network never
sees topic a or topic b. Nevertheless, there are dynamic signatures
present in the network, and learned at its output, that reflect this
scale. In Fig. 5, we show how the network processes “sound” input
from topic awhich then switches at a few words in, to topic b. The
PCA plot shows that the network separates these topics in its
activation, and also has a coherent “flow” from one topic to another.
In short, topic structure has “emerged” in how the network is
perturbed from input.

Fig. 6 shows the network's behavior during testing in a different
way. On the x-axis, we show the strongest component that reflects
topic shifts. On the y-axis, we take the strongest component that
predicts word identity. The plot is labeled with i, ii, or iii, depending
on which word is being input to the network. Word iii is on the far
right of the plot, most distant fromword i, on the left. These reflect
the same regions of space relevant to the topic structure. Impor-
tantly, word ii's location is intermediate, and can sometimes be
strongly present on the left side of the plot or the right, conditioned
on topic. The dynamical pattern relating to word ii changed as a
function of its topical context. In this sense, the network encodes a
semantic gradient influenced by the topic being processed.

In a follow-up analysis of the network's performance, we
discovered that the behavior of the reservoir's dynamics tended to
follow a regularity in the way that levels were integrated. Topic
tended to dominate the dynamics of the network, with words next,
and then sounds d the only elements the network “heard” d

dominating the later components. This analysis suggests that the
network substantially organized its performance around topical
structure, with word structure nested within topical structure, and
sound structure nested within word structure.

To further examine the hierarchical organization of reservoir
dynamics, we again took the principal components from the PCA
analysis, and tested which were best accounted for by the relevant
scales: sounds, words, or topics. In PCA, the components (the
“signature” in the reservoir) are ordered by strength, with earlier
PCA components having higher relevance than later components.2

Fig. 7 shows this effect. On the x-axis we order the signatures
(principal components) according to their strengths. On the y-axis
is the extent to which a given level of analysis, such as topic, pre-
dicts the values on that signature. A general trend we obtain is that
topic best predicts earlier principal components, and sound, the
finest-grain level, better predicts the later components. This sug-
gest that the reservoir's largest source of variation can be used to
predict topic, and this can be used to organize the lower-level dy-
namics of the system, which themselves are instantiating these
higher-level patterns through smaller fluctuations in the reservoir
as it is perturbed by each sound.

The results reported here represent a single instantiation of our
model. The code is available publicly to thosewhowish to test these



Fig. 7. Howwell different levels of analysis predict the scores on principal components
(the signatures in the 500-dimensional reservoir system). Topic tends to dominate the
lowest component, and sounds the later components. The network has dynamics that
resolve distinct levels of analysis, all while integrating them as suggested by desid-
eratum (ii) in section 4. R-Squared reflects the percentage variance in principal
component explained by multinomial factors. Light gray: topics, darker gray: words,
black: sounds.
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patterns under different parameterizations or inputs.3 We ran 100
iterations of our model, and combined results into one plot. This is
shown in Fig. 8, and the general pattern holds robustly. Topic and
words have higher relationships to first few components, and
sounds to the later components.

4.3. Discussion

In our simple simulation, we see that a relatively simple reser-
voir computing model produces multiscale dynamics, without
explicit representations for each level of language structure. Topic
of conversation, and word identity, “emerge” from the dynamics of
sound and their surrounding context.

Using PCA on the reservoir activation patterns, we find that the
network can solve this problem by combining two strategies. On
one dynamic signature in the reservoir, it responds to the broader
topical context (Fig. 6, x-axis). On another signature, it marks
whether word ii is occurring rather than i or iii (Fig. 6, y-axis). By
combining these two sources of information at the readout, the
network has predictive dynamics that resonate across all three
timescales: topic, word, and sound prediction. The network does
this through what we termed in section 4 as constitutive integration.
The model handles all levels simultaneously. This solves desiderata
(i) and (ii).

These results are related to what Elman (1990) demonstrated
with words and letters (words emerge from sequential, lower-level
statistics), and what Botvinick and Plaut (2004) showed with hi-
erarchical action sequences (a neural model can learn higher-level
action hierarchies from exemplar statistics). Our simple model
further supports these and other demonstrations showing that
what is often deemed “abstract” or “symbolic” can naturally
3 https://github.com/racdale/emergent-meaning.
emerge from a probabilistic system, processing information in time
(cf. Christiansen & Chater, 1999).

What is unique about the present model is that it does so simply
on the basis of the “resonant” dynamics of the reservoir computing
system. No abstract, complex rule system with hierarchical
encapsulation is required. In fact, the weights between neurons in
the reservoir are not learned. The model integrates the statistics of
fast-changing sounds. These statistics are organized at higher levels
(words, topics), and these higher levels are reflected in the system's
dynamics without any further specification. The model has theo-
retical implications which we elaborate in the General Discussion.
Put in pointed terms: Our results demonstrate that a multidimen-
sional dynamic system can integrate activation across several
timescales and thereby “resonate” with patterns generated by a
simple communication system; no special machinery is required.

5. General discussion

We began this paper with a question: What kind of cognitive
system can produce the composite nature of natural language? How
do humans make sense? Necessary conditions, we argued, are (i)
dynamic memory, (ii) timescale integration, and (iii) multimodal
integration. Herbert Simon's speaker in the Singapore cafe serves as
a striking illustration of these issues. Natural language performance
invokes interlocked dynamic patterns that reflect an ebb and flow
at differing timescales d from quick bursts of gestural or articu-
latory activity, to slow motion bursts that constitute one turn in a
conversation, or even an entire lecture. Phonemes unfold in milli-
seconds, words in a second or less, but thoughts and topics in a
conversation change more smoothly, fluidly, over seconds and
minutes.

We presented a model to show that recurrent dynamics provide
a rich medium for fulfilling these computational needs, even in
randomly structured networks. Our model is admittedly simple,
but it reveals this basic factd special “equipment” is not needed as
much as our mind needs a capacity to weave the timescales
together through nonlinear dynamics.

5.1. Limitations

Our simulations addressed desiderata (i) and (ii), but what
about (iii), multimodal integration? The general-purpose nature of
reservoir computing provides a ready answer. Networks of random
connectivity will integrate information over any kinds of inputs
signals, regardless of whether they originate from different mo-
dalities with the different intrinsic structures. Indeed this is the
beauty of reservoir computing: A reservoir with rich nonlinear
interactions will naturally produce a large array of nonlinear con-
junctions and disjunctions of their inputs. As the size and
complexity of reservoir dynamics grows, it becomes increasingly
likely that some of the nonlinear combinations will be useful for
learning in many tasks and contexts. Therefore, no special circuitry
is needed to performmultimodal integration by taking into account
the particular structures inherent to particular modalities.4 A
multimodal simulation falls outside the scope of this study, but
previous studies have demonstrated multimodal integration in
reservoir computing models applied to robot navigation and con-
trol tasks that rely on multiple sensor and actuator signals
(Antonelo, Schrauwen, Dutoit, Stroobandt, & Nuttin, 2007;
Antonelo, Schrauwen, & Stroobandt, 2008; see also Heinrich,
4 Multimodality may be supported by distinct input systems, which could
approximate modular structure, at least in early stages of processing before
reaching a highly integrative, multimodal “cortex.”

https://github.com/racdale/emergent-meaning


Fig. 8. The same data shown in Fig. 7, but with 100 simulations, and separated by timescale. The trend in the example demonstration holds up robustly. The largest PCA components
account for the longest timescales; finer-grained signatures (subsequent PCA components, along the x-axis) reflect words, then sounds.

6 In fact, effects of shading in prior demonstrations have been relatively subtle,
appearing as minor shifts in the trajectories when PCA is used to illustrate them.
Here, it may be interpreted as a rather larger effect as seen in Fig. 6. This may be an
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2016; Heinrich, Magg, & Wermter, 2015).
The simplicity of our model may raise another concern about

whether this architecture can scale up to more complex and hall-
mark properties of language. For example, syntactic recursion is
often regarded as a central and requisite feature of human language
skill, perhaps even an innate and defining feature of human lan-
guage (e.g., Hauser et al., 2002; Watumull, Hauser, Roberts, &
Hornstein, 2014).5 Encouragingly, several researchers have
already demonstrated syntactic capacities d and generalization d

in reservoir systems. Frank (2006) has shown that reservoir
computing can solve basic recursive problems from the most
stringent concepts of so-called “systematicity” (see Fodor &
Pylyshyn, 1988). Tong and colleagues show that reservoir
computing can carry out generalization in a language model, and
outperforms other neural network architectures (Tong, Bickett,
Christiansen, & Cottrell, 2007; see also Farka�s & Crocker, 2008).
Indeed Dominey (2013, 1995), who originated reservoir computing
to a great extent, recently argued that certain configurations of
reservoir computing can extract structural features of language
(e.g., syntactic aspects) as an emergent property of integrating se-
mantic features of the world (Dominey, 2013, p. 11; see also
Schoenemann, 1999 for related theoretical discussion):

Based on the notion that infants can parse visual scenes by
detecting sequences of perceptual primitives …, we developed an
event parser that could detect actions including take, take-from,
give, push and touch. … What we will find, is that as the cogni-
tive systems of robots become increasingly sophisticated, they will
naturally afford richer language. For example, as mental simulation
capabilities develop, the need for verb aspect to control the flow of
time in these simulations will naturally arise.

How do the results of our simple demonstration relate to prior
5 Other aspects of the model to expand the language system could include the
distributional features of the structural levels (sound-to-word-to-message ratios
should better reflect natural language reuse). In addition, admittedly, phonological
neighborhoods of words could also be simulated more faithfully.
work on recurrent neural networks? What we have demonstrated
is indeed consistent with prior work, such as Elman (1990), and
later Elman (2004), who demonstrates that prediction and
contextual facilitation occur in simple recurrent networks. Some-
times referred to as “shading,” a recurrent networkwill show subtle
fluctuations in its activation in response to contextual factors (cf.
Botvinick& Plaut, 2006; in serial memory).6 These fluctuations will
“shade” the meaning generated by a word presented to a network.
This modulation by context would lie at a longer timescale, akin to
the “topics” in our toy simulation.

Inspired by this prior work, what we have shown is an existence
proof that a communication structure can be processed at multiple
timescales. We simulated three layers of structure meant to reflect
the kind of structuring of language (albeit in highly simplified
form). With sufficient dimensionality to work with, a complex
stream of information resonates at multiple timescales. So, as
reviewed above, while reservoir computing systems can “solve
syntax,” we may also say that these systems can “solve synergies,”
in the sense that they are able to synergize multi-level statistics by
virtue of their nonlinear dynamics alone (see Dale, Kello, et al.,
2016; Fusaroli, Rączaszek-Leonardi, & Tyl�en, 2014; for related
discussion).

There are important implications to this basic observation.
Imagine presenting a series of words under a given topic. Because
of the recurrent property of the network, this will establish a
particular signature in the activity of the reservoir neurons. At this
point, when a new word is sequentially presented, the network
changes under two important constraints. First, the word acts to
illusion of our analysis: The principal components here are showing the most
extreme statistical patterns predicting word or topic identity. In addition, the
principal component for word (y-axis) shows that words are relatively stable along
some components regardless of context. Reservoir computing may thus serve as an
exploratory arena to examine what aspects of context may more or less radically
impact the processing dynamics of words in context. This is outside the scope of the
present discussion, but we thank a reviewer for noting this fact.
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“perturb” the system in a manner that will be consistent with that
word's prior presentations. In other words, hearing “d-o-g” will
perturb a language comprehension system in some consistent ways
d projecting in particular patterns, resonating in the network.
However, these perturbations will not be occurring in a vacuum.
The prior pattern of activation over the reservoir will modulate
those perturbations, as the reservoir has a memory. The word is
thus “folded” into an ongoing topic, thereby allowing the network
to predict sounds in a contextually facilitated way d words and
topics serve to structure the dynamics in a systematic way even as
the network only “receives” sounds.

The current simulation is obviously limited in assuming lan-
guage processing is a one-way process of “monologue.” Our model
only captures a unidirectional flow of information, as if one reser-
voir system, acting as a “learner,” is extracting the dynamics of an
external input source (an “adult” speaker). It would be easy to scale
this up. Exploring the properties of interactive neural models is an
important future step in this domain (see, e.g., Dale, Fusaroli, et al.,
2016 for an example). Interactive models could allow investigation
of “mutual emergent meaning,” in two systems that do not yet have
the capacity to “make sense,” in linguistic terms. Indeed, there are
many such evolutionary models that use agent-based and other
simulations (see Cangelosi & Parisi, 2002; Christiansen & Dale,
2003; for early reviews of this work).

5.2. Theoretical issues

Reservoir computing is still new to the behavioral and cognitive
sciences, but it has been studied in computer science and neuro-
science for over a decade. Here we review some of the theoretical
issues that have arisen in this literature, and consider how they
might relate to questions and phenomena in the behavioral and
cognitive sciences. The theoretical issue that has received perhaps
the most attention is how to construct a reservoir with dynamics
that are generically useful for computation. The most common
answer to this question is that reservoir dynamics tend to be most
useful when they are balanced between convergence and diver-
gence (Luko�sevi�cius & Jaeger, 2009), or between order and chaos
(Bertschinger & Natschl€ager, 2004). Kello (2013) showed that this
balance can be achieved in a spiking neural network that dynam-
ically regulates spike propagation to hover near a critical branching
point (Beggs& Plenz, 2003). Put simply, the critical branching point
is where spike propagation is conserved over time, such that spike
rates remain stable on average (that is, rates neither converge to
zero or diverge to infinity). Numerous studies have reported evi-
dence for critical branching in a range of neural systems (Hahn
et al., 2010), and theoretical analyses have shown that critical
branching is beneficial to the computational (reservoir) capacity of
spiking networks (Shew et al., 2011). Kello (2013) argued that the
effects of critical branching can be seen even in human perfor-
mance as power law distributions, including language performance
(Kello, Anderson, Holden, & Orden, 2008). Taken together, these
and other studies suggest that many neural and cognitive systems,
including language systems, may be tuned and maintained for the
purpose of reservoir computing.

Is reservoir computing neurophysiologically plausible? It's
important to note that neural models, in general, suffer from weak
plausibility. This is to be expected, given the scale and complexity of
the central nervous system, and the still-nascent state of under-
standing how computation works at higher levels of the brain. For
example, backpropagation has long been considered to be neurally
implausible, but some are revisiting this dogma (Lillicrap,
Cownden, Tweed, & Akerman, 2016).

There are reasons to suspect that reservoir computing reflects
some general organizational principles of cognition as it is
implemented in the mammalian brain. For example, the original
proposal from Dominey (1995) was that cortico-cortical recurrent
connections could support this kind of nonlinear dynamics, by
implementing something akin to a working memory that may be
especially relevant to prefrontal cortex. These dynamics could then
be wired up with other circuits in the nervous system to support
dynamic processing of a complex sort. For example, Dominey's
original work (1995; Dominey, Arbib, & Joseph, 1995) demon-
strated that cortical networks with recurrent nonlinear dynamics
can help establish reward-based learning via corticostriatal pro-
jections which are trained, akin to the “readout” of the reservoir
system.

More generally, the idea of recurrent connections serving as a
computational foundation is consistent with new discoveries that
the nervous system may require substantial experience-dependent
sorting and plasticity during development. Epigenetic develop-
mental trajectories during early human brain development cannot
sort strict functional pre-specification of cortical regions (Buckner
& Krienen, 2013). This organizational principle means that much
of cortex may be setup to permit multimodal integration, so much
so that some have argued that the mammalian neocortex is
“essentially multisensory” (Ghazanfar& Schroeder, 2006). In fact, if
it is true that even random projections in a growing brain permit
more complex sequential processing, then the reservoir framework
may be well situated to explore more systematic learning and
sorting that may take place over those initially random projections.
This may by itself support recursive processing akin to syntax (e.g.,
Frank, 2006). Curiously, some work on comparing species by brain
volume finds that an evolutionary growth of absolute brain volume
supports sequential memory (Stevens, 2014), as might be predicted
from the learning dynamics of reservoir size. In addition, there may
be “critical cognitive thresholds” in the global parameters of these
models, providing a potential arena for exploring nonlinear
thresholds in the evolutionary processes of brain and cognition
(e.g., Herculano-Houzel, 2012; Schoenemann, 1999).

5.3. Conclusion

In a simplemodel of language processing, we demonstrated that
a randomly connected reservoir can encode a dynamicmemory and
integrate multiple timescales, and we argued that inherent
encoding capacity can be foundational to sense-making. The com-
posite nature of language is captured by nonlinear dynamics that
combine patterns across multiple timescales and modalities. The
various levels of language processing may thereby interact quickly,
continually, and sometimes effortlessly, to make sense from the
sounds and sights that compose our acts of language. The “sense”
humans make is a self-organizational property of the cognitive
system's behavior, resonating in a manner that weaves fluctuations
from sounds to topical context.

Appendix

The model in the paper is based on the reservoir computing
architecture known as “echo state networks.” These represent a
major emerging tradition in this domain of neural modeling (Jaeger,
2001, 2007). They can be distinguished from another brand of
reservoir computing called “liquid state machines” (Maass,
Natschl€ager, & Markram, 2002). These models have similar prop-
erties, but are implemented slightly differently. Liquid state ma-
chines employ spiking neurons, whereas echo state networks (the
architecture used here) use leaky integrate-and-fire neurons. These
frameworks can also model interconnectivity in the reservoir in
different ways. For example, echo state networks often have highly
sparse connectivity in the reservoir (1% of reservoir neurons
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connected). In general they are regarded as subtly different archi-
tectures co-discovered in the early 2000s, and have similar prop-
erties (Jaeger, 2001; originally these properties discovered by
Dominey, 1995).

We use an implementation offered by Luko�sevi�cius (2012) and
implemented in R. All code that we use is derived from his initial
demonstrations, and can be found here: https://github.com/
racdale/emergent-meaning

The technical underpinnings of the framework are elegantly
introduced by Luko�sevi�cius (2012), and can be simply described
here. A reservoir of neurons in the echo state network is repre-
sented as vector x(t), and its activation from time step to time step
is a function of itself (multiplied by a set of connectionweights) and
randomly connected input, u(t):

x(t) ¼ (1-d) x(t-1) þ d tanh(W'u(t-1) þ Wx(t-1))

W’ is a weight matrix, randomly initialized, between inputs and
reservoir. d is a decay parameter reflecting how leaky the simulated
neurons are. Connections between these layers of neurons are
initialized using uniformly random values from �0.5 to 0.5. d was
set to 0.3 (the simulation does not rely on any narrow range of these
parameters). The reservoir weight matrix W is rescaled using its
singular spectrum d in order to have stable dynamics under
recurrent feedback, the maximum singular value of the weight
matrix must be near one (Jaeger, 2001, p.13; Luko�sevi�cius, 2012). As
specified by Luko�sevi�cius, this is done by randomly initializing W
then performing a rescaling:

W:¼ 1.25 W / l(max)

l(max) is the maximum singular value of the matrix W once it is
randomly initialized.

To explore the dynamics here, we use principal component
analysis (PCA) on the history of reservoir activations. We then fit
various linear models to the components of the PCA output to
determinewhich component in the network resonatesmost closely
with the input perturbation of interest (e.g., current topic, vs. cur-
rent sound). PCA essentially rotates the activation matrix of the
reservoir, and we take the rotated data using the component that
best reflects the levels of interest. The new rotated data is then
plotted over time to reflect the dynamics of that signature (e.g., XOR
in section 3).
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