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Abstract

Discovering the governing equations for a measured system is the gold standard for modeling, predicting, and understanding complex
dynamic systems. Very complex systems, such as human minds, pose stark challenges to this mode of explanation, especially in ecological
tasks. Finding such “equations of mind” is sometimes difficult, if impossible. We introduce recent directions in data science to infer dif-
ferential equations directly from data. To illustrate this approach, the simple but elegant example of sparse identification of nonlinear
dynamics (SINDy; Brunton, Proctor, & Kutz, 2016) is used. We showcase this method on known systems: the logistic map, the Lorenz
system, and a bistable attractor model of human choice behavior. We describe some of SINDy’s limitations, and offer future directions
for this data science approach to cognitive dynamics, including how such methods may be used to explore social dynamics.
� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Differential equations define the time evolution of a
dynamical system. Their precision inspires some to see such
mathematical formulation as critical to scientific under-
standing. This perspective on differential equations found
prominent expression in the dynamical systems approach
to cognition of the 1990s (Port & Van Gelder, 1995; Van
Gelder, 1995), and was the subject of vigorous debate
(Bechtel, 1998; Eliasmith, 1996): “Dynamical systems gov-
erned by differential equations are a particularly interesting
and important subcategory, not least because of their cen-
tral role in the history of science.” (Van Gelder, 1995, p.
368) Simon (1992) famously expressed an even stronger
position, arguing that cognitive explanation is founded
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on “difference equations” which characterize much cogni-
tive systems research still:

“For systems that change through time, explanation takes
the form of laws acting on the current state of the system
to produce a new state – endlessly. Such explanations can
be formalized with differential or difference equations. A
properly programmed computer can be used to explain the
behavior of the dynamic system that it simulates. Theories
can be stated as computer programs.” (Simon, 1992, p. 160)

Nowadays this mode of mathematical description and
explanation permanently inhabits many realms of cognitive
science.1 It was well established even before this recent
1 A reviewer helpfully pointed out that description and explanation
should not be confounded, and that equations alone rarely fulfill our
conventional notions of “explaining” systems. For simplicity, we do not
distinguish between these modes of scientific inquiry – describing and
explaining – but assume that differential equations are considered, by a
great many, to be important for both.
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debate. From the firing of single nerve cells (Hodgkin &
Huxley, 1952) and the control of an entire physical body
(Beek, Turvey, & Schmidt, 1992; Kugler, Kelso, &
Turvey, 1980) to multi-agent models (Richardson et al.,
2016), systems of differential equations have long captured
a wide variety of psychological phenomena. When we have
a set of differential equations for a system, we can predict
its time evolution, understand its controlling variables,
and identify how system variables interact. These dynamic
equations can also participate with other forms of cognitive
explanation, such as mechanistic explanations of how a
cognitive architecture is composed of various particular
parts and their interactions (Kaplan & Bechtel, 2011).

Despite their power, differential equations are not
always easy to identify. Identification of governing equa-
tions can involve an interacting cycle of mathematical
invention and empirical tinkering. Guided by intuition, a
scientist can happen upon a formulation that generates a
covering law (Hempel, 1966). Consequences of this cover-
ing law can be explored to consider other formulae in other
domains of application. The literature on this is deep and
colorful, and excellent reviews of the philosophy and his-
tory of science abound (Brush, 1974; Hempel, 1966;
Hirsch, 1984; Kuhn, 1962).

Cognitive scientists continue to study and model this
psychological process of identifying scientific generaliza-
tions and natural law (Addis, Sozou, Lane, & Gobet,
2016; Klahr & Simon, 1999; Langley, 1987). A complemen-
tary approach, made possible by computational tools of the
day, is to use data and algorithms together to automatically
recover dynamical laws. This is what we consider here in
this paper. There is an emerging domain, growing rapidly
with the advent of data science and machine learning, to
precisely recover differential equations from raw data. This
offers considerable potential to researchers interested in the
dynamics of socio-cognitive systems. It may be possible to
use these tools for new and explicit descriptions of system
dynamics, even when the data are noisy, and especially
when there are plenty of data to be found (a common cir-
cumstance these days: Paxton & Griffiths, 2017).

There has been considerable prior work on equation dis-
covery. Motivated by the same points we raise above,
researchers over the past two decades have explored differ-
ent frameworks for automatic recovery of governing equa-
tions. Below we first briefly review this past work through
influential examples. After this, we introduce a recent sim-
ple and elegant formulation of equation discovery (SINDy;
Brunton, Proctor, & Kutz, 2016). Based only on transfor-
mation of time series data, and simple sparse regression,
a researcher can recover equations for their measured sys-
tems. In some simple cases, these equations may reflect a
full reconstruction of a system’s underlying dynamics.
More complex cases present other challenges, but in these
more complex situations SINDy may still be useful. Below,
we introduce SINDy and then showcase how it works on a
number of example systems. We also outline its key limita-
tions. After this, we summarize a few outstanding issues in
these domains, including how SINDy and related methods
could be expanded in the future to help recover governing
equations of social systems.

1.1. Some background

There has been considerable prior work on equation dis-
covery. Classic work in cognitive science itself can be found
in Langley (1981), who used symbolic cognitive models to
infer equations from data. His early model, BACON.3, is
meant to capture some important aspects of human scien-
tific activity. More recently, Langley and colleagues
(Langley, Sanchez, Todorovski, & Dzeroski, 2002) have
also used time series data in an Inductive Process Modeler
that can fix certain parameters on population dynamics
models. These general approaches fall under the rubric of
symbolic machine learning, as a kind of heuristic search.
For example, process models of biological systems can
include a space of parameters that describe the relationship
among variables (Džeroski & Todorovski, 2008). A heuris-
tic search navigates this parameter space under certain con-
straints to best fit a set of data.

Crutchfield, Shalizi, and others have developed a hidden
Markov approach that generates a directed graph that rep-
resents a theory of a system from a time series of its behav-
ior (Crutchfield, 1994, 2011; Shalizi & Crutchfield, 2001;
Shalizi & Shalizi, 2004). This framework finds transitions
between system states in coarse-grained representation of
the time series. The result is a kind of compact theory
which can describe the time evolution of the system. It also
provides descriptive measures of the system, such as its
computational complexity. This modeling framework can
be used to simulate the relationship between measurement
level and theory, and can be likened to a cognitive agent
seeking to explain and model a system’s dynamics
(Crutchfield, 1994; Dale & Vinson, 2013).

There are many related techniques, both in cognitive
science and in other realms of the physical sciences. An
excellent review can be found in Sozou, Lane, Addis, and
Gobet (2017). Much work used clever analysis of time ser-
ies with assumed form of laws to recover particular systems
(Bezruchko, Karavaev, Ponomarenko, & Prokhorov, 2001;
Bünner, Meyer, Kittel, & Parisi, 1997; Crutchfield &
McNamara, 1987; Smith, 1992).

With the advent of large matrix libraries, advanced
regression methods are now possible. Schmidt and
Lipson (2009) use symbolic regression and motion tracking
of physical systems to derive various equations of motion.
Example systems included chaotic systems, such as double
pendula. Their approach involves extraction of motion
time series, and then seeking invariances (correlation struc-
ture) among the measured variables according to candidate
symbolic functions. The symbolic functions are found via a
search through a space of candidates, generated randomly
and gradually winnowed down based on best fit (see their
Fig. 2). This method is closely related to the one we
showcase below, with the primary difference that in SINDy



2 We provide an easy-to-install R library sindyr, https://github.com/
racdale/sindyr, along with extended summaries leading the reader through
each of the demonstrations below.

R. Dale, H.S. Bhat / Cognitive Systems Research 52 (2018) 275–290 277
candidate functions are defined comprehensively as a
search through all possible functions defined by a set of
features of interest to the researcher. Modeling more com-
plex systems, Pikovsky has shown how time series of mea-
surements from a neural network can be used to
reconstruct the neural network itself (Pikovsky, 2016).
Pikovsky’s method can reconstruct a connection matrix
using time-difference neuron states through solving for a
linear system with singular value decomposition (similar
to the regression-based method used here).

In many of the examples reviewed here, researchers esti-
mate derivatives numerically. This differencing is key in
these approaches (and the one we illustrate below). Recent
research has sought to overcome limitations in differencing
raw data. For a given signal (e.g., a noisy time series), one
will typically find that differentiation amplifies noise while
integration filters noise out. Chen, Shojaie, and Witten
(2017) have shown how to learn dynamical systems without
using numerical differencing or differentiation. In their
work, they use the time-integrated or integral equation
form of the dynamical system.

Equation discovery seeks to find a dynamical system
that best fits a given data set. Each dynamical system is
specified by one or more functions – the space of all such
functions is typically infinite-dimensional. As in many
other nonparametric problems, this leads to a model selec-
tion problem. As we increase the dimensionality of the
space over which we search for a best-fitting dynamical sys-
tem, we will decrease training error. However, this fit to
training data comes at the expense of generalization to
new data. Using techniques from compressed sensing,
non-convex optimization, and the statistics of chaotic sys-
tems, recent work has investigated conditions under which
equation discovery techniques converge to the correct
underlying dynamical system (Tran & Ward, 2017; Zhang
& Schaeffer, 2018). A recent approach also seeks to find
lower-order models of network dynamics by using Baye-
sian model comparison (Daniels & Nemenman, 2015).
These papers reflect an exciting new direction of this work.
They will help refine the selection of models among many
that may be formulated for a given set of complex data.

Some recent research in cognitive science is inspired by
this data-driven reconstruction of lawful regularities. Using
first-principle Newtonian mechanics, a “mental landscape”
can also be reconstructed via behavioral data (O’Hora,
Dale, Piiroinen, & Connolly, 2013; Zgonnikov, Aleni,
Piiroinen, O’Hora, & Bernardo, 2017). In this approach,
researchers collected a series of computer mouse trajecto-
ries towards two possible decisions, at the top left or top
right of a computer screen. These computer-mouse data
are represented as x; y-coordinates, starting from a set of
fixed coordinates (x ¼ 0; y ¼ 0). Each time series is a deci-
sion, with the mouse moving to one final decision point on
the left (x ¼ �A; y ¼ B) or right (x ¼ þA; y ¼ B) on the
computer screen. O’Hora et al. (2013) and Zgonnikov
et al. (2017) treat these movements as a kind of “descent”
into an attractor on an uneven surface. These attractors
model a decision as starting from the peak of a hill, and
falling into one of two valleys. Assuming a set of equations
with the form of Newtonian mechanics, these decision sur-
faces can be estimated from these time series data.

Many statistical approaches to model and explore com-
plex data are related to these techniques. For example, the
large and still growing application of structural equation
modeling (SEM) by social scientists is fundamentally about
both exploring and confirming theoretical hypotheses from
complex response data (Keith, 2005). SEM models tend to
be structural, rather than dynamic, in nature. However,
many other still common quantitative methods are closely
related to our goals. The notion of a model as a scientific
explanation of some phenomenon cannot be neatly distin-
guished from general statistical practices (Stigler, 2016,
Chap. 6). In signal processing and statistical modeling,
for example, methods such as Kalman filters, time series
regression modeling, and other applications of hidden
Markov approaches, offer a rich array of choices (for brief
reviews see Brockwell, 2014; Rydén, 2015).

It should therefore be emphasized that many statistical
modeling techniques have relevance to understanding
underlying relationships. What is unique about this recent
trend in data science is to (i) find methods that have some
relative transparency of output, (ii) relate output to low-
dimensional lawful regularities, which express (iii) dynam-
ical equations that govern a system’s behavior. Surely
HMMs and other techniques can be placed under this des-
ignation. But the synergy among (i)–(iii) reflects a distinct
trend. Our brief review of this trend shows a long-
standing interest in techniques that have these properties.
Recently, rather extensible out-of-the-box methods are
now available, and these may increase accessibility to
researchers in many areas, such as the social and cognitive
sciences. Indeed, with the emergence of machine learning
techniques for training models on very large datasets over
very large feature sets, it is now possible to fit models with
few assumptions about their form. We use a recent example
based on this “data science” approach to recovering non-
linear dynamics.

2. Present study

An emerging approach to model building in the compu-
tational and social sciences is to exploit the ready availabil-
ity of high-density measurements and machine learning
algorithms to estimate models. We describe one of these
techniques, showcase it on simple and known systems,
and then develop ideas for how it might be expanded to
raw data. Importantly, we offer full source code in R, along
with simulations, that can reconstruct these demonstra-
tions, and serve as a foundation for further methods
development.2

https://github.com/racdale/sindyr
https://github.com/racdale/sindyr
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As a demonstration, we describe a framework called
sparse identification of nonlinear dynamics (SINDy) intro-
duced by Brunton et al. (2016). It is perhaps the simplest
kind of regression framework for doing equation recovery.
Put simply, SINDy takes a set of time series, transforms
them in given ways, differentiates them, and then conducts
multiple regression. By iteratively thresholding the solu-
tions of ordinary least squares problems, SINDy converges
on a set of regression coefficients that define ordinary
differential equations (ODEs). SINDy thus serves as an
elegant illustration of this data science approach.

As a sparse regression technique, SINDy assumes that a
small number of potential variables govern a system’s
dynamics. It is also very easy to deploy and extend. Brun-
ton, Kutz, and others have shown simple extensions can
integrate system forcing (Brunton et al., 2016), model com-
plex fluid dynamics (Rudy, Brunton, Proctor, & Kutz,
2017), integrate latent variables extracted from high dimen-
sional data (Loiseau & Brunton, 2018; see also Schmid,
2010), and extract graph structures of variable relation-
ships (Mangan, Brunton, Proctor, & Kutz, 2016). It is
therefore elegantly simple, extensible, and easy to deploy.
This is why we showcase SINDy here. It is important to
note that we describe some of its limitations below, moti-
vating our discussion about potential future developments.

In the remainder of this paper, we infer dynamic govern-
ing equations from simulated data directly using SINDy, in
known systems. To make SINDy and related tools relevant
to cognitive data, we also propose metrics that may be use-
ful. Indeed, the equations inferred by SINDy may serve as
interesting dependent variables themselves, describing the
underlying changes in the relationships among interacting
variables. In the next section, we introduce this method
in more detail, before applying it to sample systems.

2.1. Data processing and application of SINDy

SINDy is a regression-based technique for inferring
equations from multivariate time series. It is based on
two guiding assumptions. First, governing equations are
often “sparse,” in the sense that determining the time evo-
lution of one system variable may be a function of a rela-
tively smaller subset of the overall space of potential
feature combinations (e.g., higher-order polynomial inter-
action terms). Second, linear regression can be used to pre-
dict estimated first-order derivatives of the system – this is
surprisingly sufficient to recover even nonlinear relations.
SINDy uses the observed data to estimate derivatives for
the system variables, using a method called total-
variation regularized derivative (Chartrand, 2011). SINDy
can be described in one compact equation, adapted here
from Brunton et al. (2016):

dX
dt

¼ f ðXÞB ð1Þ

X is a matrix of state vectors, with rows reflecting individ-
ual samples, and columns the individual state variables.
The function f returns a transformation of the observed
state variables, such as polynomial terms, trigonometric
transformations, and so on. These are typically up to the
researcher. Because SINDy is a sparse regression approach,
the number of candidate transformations can be very large
in number. This is illustrated in Fig. 1.

B is a matrix of coefficients. It is assumed by SINDy that
these coefficients should mostly be 0. SINDy uses a thresh-
olding process as B is fit from data. Only coefficients that
survive this thresholding process retain non-zero values.
The remainder are set to 0. This is called sparsification.
SINDy can be used with a variety of sparsification tech-
niques, such as the well-known LASSO (Tibshirani,
1996). In the demonstrations here, we use an implementa-
tion that carries out a simple sequential least-squares
thresholding (Brunton et al., 2016; Quade, 2018), which
is simply to say that regression coefficients not above some
researcher-fixed threshold (�) are set to 0 iteratively as the
model is refit until it converges (i.e., the thresholding ceases
to change the model). This process is illustrated in Fig. 2.

Solving for B requires predicted variables, on the left
side of Eq. (1). In the SINDy formulation, predicted vari-
ables are first-order derivatives estimated from the
observed data. The simplest way to estimate first-order
derivatives is the method of finite differences, which we
use here (illustrated also in Fig. 1). We smooth this method
by 2 samples in the following way, with x representing one
column of m-by-n data matrix X, and xt a value at a given
time sample t:

dx
dt

¼ x2 � x1
S

; . . . ;
xk � xk�2

2S
; . . . ;

xm � xm�1

S

D E
;

k ¼ 3; . . . ;m� 1 ð2Þ
The parameter S is simply the time interval of the source
sample rate, allowing SINDy to fit real time. Coefficients
of SINDy’s output will obviously be impacted by this
parameter, and so the researcher typically has to attend
to the scales of both input and output variables in order
to threshold appropriately.

With f ðXÞ and dX=dt in hand, we solve for B via ordi-
nary least squares regression, i.e., by minimizing the
squared, column-wise, two-norm error between the left-
and right-hand sides of Eq. (1). It is instructive to look
under the hood on the mathematics of this procedure, as
it also incorporates some critical ingredients of how SINDy
and related methods will work. For an n-dimensional
vector v ¼ ðv1; v2; . . . ; vN Þ, let

kvk22 ¼
Xn

j¼1

v2j

be the squared two-norm. Let Bj denote the j-th column of
the matrix B, and let dXj=dt denote the j-th column of the
matrix dX=dt. We find Bj by minimizing

dXj

dt
� f ðXÞBj

����
����
2

2



Fig. 1. A representation of the first step of the SINDy algorithm. The researcher collects samples of data in matrix X. These might be several variables
(x; y, etc.) collected at a given sample rate. The researcher then obtains a representation of the first-order derivative of the data (bottom left), and then uses
a feature function f to generate a set of derived variables of interest (bottom right). The function f in many cases may simply multiply these original
variables (generating polynomial terms). Note: Cell shading is meant to connote variation in any such data matrices.

Fig. 2. In the second step for SINDy, an iterative thresholding approach is taken to fit a matrix of coefficients, B. B is a sparse matrix, where all coefficients
remaining are above some threshold, �. Once this matrix B is established, we can fully state the estimated dynamic system.
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with respect to Bj. This is a least squares regression prob-
lem with solution

Bj ¼ ðf ðXÞT f ðXÞÞ�1
f ðXÞT dXj

dt
: ð3Þ

In the theory of linear least squares regression, this is called
the solution to the normal equations. The following three
remarks are important for our purposes here:
1. We have assumed that the matrix f ðXÞ has full column
rank. As long as the user chooses a set of linearly inde-
pendent transformations of state variables, this condi-
tion will be satisfied. For instance, choosing all
polynomial transformations up to a fixed order will
result in a f ðXÞ matrix with full column rank.

2. Let A ¼ f ðXÞT f ðXÞ and let C ¼ f ðXÞT dX=dt. Then B is
the solution to the system AB ¼ C. This solution can be



3 It is not a multiple of 200 because, as noted, we look one step ahead to
estimate dX=dt, and so lose one data sample.
4 SINDy does assume a number of critical details about the sampled

system, which will have to be remarked on later in more complex
measurements – SINDy does require the researcher to collect adequately
diverse measurements under functionally relevant conditions. By “func-
tional,” we mean that the sampled data will in some comprehensive
manner sample the array of behaviors that a mathematical function will
exhibit. In the case of the logistic map, SINDy requires a good sampling of
values of a to work adequately. Similarly, the Lorenz reconstruction
works only in an adequate sample that captures the kind of interval
variable that reflects the functional structure of the governing equations.
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obtained numerically using a variety of matrix factoriza-
tion algorithms that have been well-known and built
into tools such as MATLAB and R for some time. In
MATLAB, this procedure is often carried out with what
is known as the backslash operator. In our implementa-
tion, we use the mldivide function from the pracma

library in R. In particular, full inversion of the A matrix
is unnecessary.

3. In case f ðXÞ does not have full column rank, the solu-

tion Bj still exists and is given by Bj ¼ f ðXÞydXj=dt,

where f ðXÞy is the Moore–Penrose pseudoinverse of
f ðXÞ. This pseudoinverse exists for any possible matrix
f ðXÞ and can be computed via the singular value decom-
position (SVD).

The first linear regression step in SINDy, illustrated in
Fig. 2, is to compute Bj as above for each column j. The
matrix B will typically be filled with non-zero coefficients.
SINDy then forces to 0 any value in the matrix that is

below the threshold �. Let us call the resulting matrix Bold.
SINDy then refits B. Suppose we are trying to find the

j-th column of this new B. We form a version of f ðXÞ that
retains only those columns of f ðXÞ that correspond to non-

zero entries of the j-th column of Bold. Using this version of
f ðXÞ, we compute Bj as in Eq. (3). Carrying this out for all
columns j, we form B. This procedure is continued until
convergence, and is therefore a kind of iteratively thresh-
olded linear regression.

In a nutshell, this is SINDy. We now demonstrate how it
works on a series of known systems, including one related
to cognitive dynamics.

3. Demonstration of SINDy in known systems

We first revisit two simple examples from Brunton et al.
(2016). We show that the classic logistic map can be fit with
SINDy. By sampling a subset of values of its single control
parameter, SINDy recovers a close approximation of the
closed-form update equation. We then showcase something
similar with the Lorenz system. Sampling its three system
variables under parameter settings that generate chaotic
behavior, SINDy can accurately recover the differential
equations, including nonlinear terms, that generate its
behavior. Following these demonstrations, a known system
recently used to model cognition is fit with SINDy. We use
a model from Tuller, Case, Ding, and Kelso (1994) and
adapted by Duran and Dale (2014) to capture forced-
choice dynamics in a cognitive task.

3.1. Logistic map

The logistic map is among the simplest dynamic systems
capable of showing a wide range of interesting behavior,
such as bifurcation and transition into chaotic behavior.
It is defined by the following discrete update equation over
a single state variable:
xtþ1 ¼ axtð1� xtÞ ð4Þ
The control parameter a determines this univariate sys-
tem’s behavior, revealing various regimes such as a point
attractor, period bifurcation, and chaos. In Fig. 3, we show
how this model is run under different values of this param-
eter. When a enters certain value ranges, the system vari-
able of the logistic map xt can reveal several interesting
behaviors, including chaos (illustrated with a ¼ 2:1 and
3:95). In Fig. 3, we show the different values that xt can
take on under values of a. For low values of a, the logistic
map behaves like a point attractor: It converges on a single
value. For example, when we set x ¼ :01 and run it under
parameter a ¼ 2:1, the system converges on a particular
value near x � 0:55. As a increases, xt starts to take on
two or more oscillating values. Once a reaches a threshold
of about 3:57, the system enters a chaotic regime, taking on
many values. This simple model has been applied to a vari-
ety of dynamics, including population change and social
dynamics (see Richardson, Dale, & Marsh, 2014, for a brief
review). Here we reconstruct this simple equation using
SINDy in a manner consistent with Brunton et al. (2016).

SINDy can reconstruct this basic formula through the
sparse regression technique describe above. To do this,
we initialize the parameter a to the value 2:1 and slowly
increment it to 3:99. As we increase a, at each value for
a, we measure the logistic map for 200 iterations, collecting
xt and a as variables. Collecting these data into two col-
umns (a; x) creates a data matrix (X in Fig. 1) of 7599 rows
by 2 columns.3 As in Brunton et al. (2016), we define the
first-order derivative of this system as dx

dt ¼ xtþ1. Equipped

with this raw data and after computing the derivative, we
produce a feature matrix f ðXÞ that contains all individual
and multiplicative polynomial terms up to the third order
(illustrated in Fig. 4). We then solve for the coefficient
matrix B through iteratively thresholded linear regression,
as described in the prior section. SINDy is surprisingly
accurate in recovering the logistic map.4

3.2. The Lorenz system

The Lorenz equations, famous in the atmospheric
sciences, are also well known to dynamical systems
researchers in cognitive science, as they again illustrate var-
ious properties of dynamic systems. These equations reveal
multiplicative (nonlinear) relationships among three state



Fig. 3. Top: We illustrate iterating the logistic map under two values of the control parameter a. When a ¼ 2:1 and x begins at .01, the logistic map
converges on a particular value. When a increases, the behavior of x can become more complex, and under a ¼ 3:95 it displays a chaotic regime, traversing
a wide range of values. Bottom: We stored values of xt as the logistic map was iterated over time. After each 200 iterations, we slightly incremented the
control parameter a by.05 to obtain a sampling of its range of possible behaviors. The two bottom graphs represent the data X submitted to SINDy. The
blue and red colors shown are for convenience – indicating in which region the examples (Top) derive from the overall data (Bottom).
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variables ðx; y; zÞ. The relationship among these variables is
expressed in the following way:

_x ¼ rðy � xÞ
_y ¼ xðr � zÞ � y

_z ¼ xy � bz

ð5Þ

The variables r; r, and b determine the shape of the sys-
tem’s dynamics, and can be given interpretations relevant
to the form of atmospheric flow. After setting these param-
eters to particular values, and determining an initial state
ðx0; y0; z0Þ, these equations precisely define the time evolu-
tion of the system. We illustrate the famous “butterfly”
attractor in Fig. 5. This behavior of the Lorenz system
can be clearly seen under various settings, such as control
parameters r ¼ 10; r ¼ 28, and b ¼ 2:6. We show this in
Fig. 5. These three variables also serve as the data input
X for SINDy.
We ran the Lorenz system under these parameters for

50,000 time steps (each of size 10�3), and use only these
three variables to populate X and compute derivatives
and parameters. The recovery of these equations via
SINDy is conducted in a similar way, using the method
of finite differences described in the prior section. The spar-
sification of B leads to a very good fit, illustrated in Fig. 6.
As in the logistic example, we show a regeneration of the
Lorenz butterfly under these reconstructed parameters by
initializing ðx0; y0; z0Þ to the first step of the observed data.
This is shown in the simulated data, in Fig. 6. It bears a
close resemblance to the underlying dynamics that we
expected.

The logistic map and Lorenz are well-known demon-
strations, shown in Brunton et al. (2016), but we recon-
struct them here for illustration. In the next section we
showcase how this data science approach could be used



Fig. 4. Left: The series of samples of ða; xÞ gathered in X are transformed into a set of third-order polynomial features, shown in f ðXÞ, and first-order
derivatives. Because this system is discretely updated, dX=dt is taken to be the values one iteration ahead. Top right: These are then used to reconstruct a
set of coefficients in B, shown in the top right. The equation for the logistic map can be approximately recovered by B, to a good approximation. Bottom
right: This raw formulation in B (i.e., all decimal places, direct from the fit) can then be used to generate system behavior under the same values for a in
Fig. 3.

Fig. 5. We accumulated 50,000 time steps (each of size 10�3) of the Lorenz state variables x; y, and z. We use a common setting for the control parameters,
generating a chaotic regime: r ¼ 10; r ¼ 28, and b ¼ 2:6. Below X, we have plotted the data used as input to the SINDy algorithm.
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Fig. 6. We use the method of finite differences described above, and generate the third-order polynomial feature space. Running the sparse regression
technique generates a close approximation to the coefficients B, which define the set of equations for the Lorenz. Beneath the reconstructed equations, we
show a simulation of the Lorenz system under these reconstructed values. To do this, we set ðx; y; zÞ to the first values in X, then iterate only under our
reconstructed model for 10,000 steps. The result is shown here in the 3D plot.
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on a human experimental context by drawing from a
dynamic simulation of choice behavior.

3.3. Recovering bistable attractor models of cognitive

dynamics

A well-known approach to capturing human behavior is
to use equations that define a two-well attractor. The
Haken-Kelso-Bunz model of bimanual coordination is per-
haps the best known (Haken, Kelso, & Bunz, 1985).
Another that is well suited to SINDy is that of Tuller
et al. (1994). This model is defined by a potential landscape
equation in which two minima describe the movement of a
system into one of two stable states. This general strategy
has offered a fruitful means of capturing the dynamics of
Fig. 7. On the left, the potential landscape from Tuller et al. (1994) that can be
illustrate how this can be used to model behavior, such as tracking human ac
many cognitive and perceptuomotor processes (e.g., among
many: Frank, Richardson, Lopresti-Goodman, & Turvey,
2009; Raczaszek, Tuller, Shapiro, Case, & Kelso, 1999;
Schmidt, Carello, & Turvey, 1990; Tuller et al., 1994; van
Rooij, Bongers, & Haselager, 2002), including high-level
cognitive processes, such as choosing a social perspective
during interaction (Duran & Dale, 2014). The Tuller
et al. (1994) variant of this approach is based on a potential
landscape defined by the equation:

V ¼ kx� x2

2
þ x4

4
ð6Þ

This is visualized in Fig. 7. Duran and Dale (2014) use the
first-order derivative of this function to define movement
across the single state variable in the following way:
used for iteratively modeling a two-well attractor system. On the right, we
tivity through the computer mouse to a decision point.



Fig. 8. On the left, we illustrate the rise to threshold of 100 decisions, collected as two system variables (k and x). We treat this as a discretely updated
system like the logistic map, and define the first-order derivative in the same manner. This approximately recovers the update equations of the two-well
system. The model in this case uses random values of k between �0:5 and 0:5 and noise of 0:01.

5 This small adjustment to the data is critical for a strong fit of the choice
model.
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xtþ1 ¼ xt þ að�k þ xt � x3t Þ þ Nð0; rÞ ð7Þ
Here Nð0; rÞ represents a source of Gaussian noise with
mean 0 and standard deviation of r. a is a parameter that
determines how rapidly the simulation settles. For our
data, we chose a ¼ 1 to simplify the equation we are recon-
structing. When initialized at the center (saddle point) of
the potential, this system variable will begin to change until
it converges towards the minima seen in Fig. 7. The settling
process of this simple formulation models behavioral or
cognitive dynamics towards a decision, and has been used
to model multiple timescales in cognitive processing
(Duran & Dale, 2014), such as the movement of the arm
or computer mouse towards an option (Spivey & Dale,
2006). This is also illustrated on the right side of Fig. 7.
The model can be seen as implementing a kind of decision
carried out by hand, moving towards a target to render a
response. Duran and Dale (2014) utilized this framework
to model this kind of dynamic tracking of decision pro-
cesses, specifically how participants chose a perspective in
a social task.

We simulated many such iterations to a threshold. Akin
to a psychological experiment, we simulated 100 trials of
this settling process, and reconstructed this equation for a
single extended performance by the model. For each trial,
we randomly selected k to be between �:5 and :5. Here k

is a parameter that reflects the “tilt” of this potential. If k
is negative, it slightly tilts the potential towards a x > 0
outcome; when it is positive, toward a x < 0 outcome.
For each iteration, after randomly choosing k, the model
was initialized at x ¼ 0. For this first reconstruction, we
assume only a small source of noise, with r ¼ :01 (revisited
below).

Using the update Eq. (7), we track the value of x as it
changes. This x then accumulates in a sum term (

P
x),

and when that sum reaches þ or �20, the threshold is
reached, and the process begins again. We carried out this
process 100 times. A visualization of these trajectories is
shown in Fig. 8. We collected k and x as our system vari-
ables, and used SINDy to reconstruct the original update
equation. Importantly, when we combine the model’s mea-
surements across each trial, we omit the time points that
would align the derivative at the last time sample with
the start of the next trial.5 Results are shown in Fig. 8.

These surprising results should be considered alongside
the time series modeled here. In this two-well decision
model, these simulated trials are often very short, with
fewer than 20 to 30 time iterations for the model. When
only 100 of them are collected from this model, we never-
theless obtain a close approximation of the governing
update rule for the state variable.

This model can also be simulated as a kind of cumula-
tive diffusion process, in which we stop the iteration once
a cumulative sum of system states achieves a threshold of
some constant (illustrated in Fig. 7, right). Indeed, the
methods we introduce here may be useful in fitting such dif-
fusion models of reaction time (Ratcliff, Van Zandt, &
McKoon, 1999), which can also be fit using statistical
methods (e.g., Vandekerckhove & Tuerlinckx, 2007). Pro-
cedures for fitting these models have been central since
their inception (Link, 1975), and a technique like SINDy
may be an especially flexible framework in which to explore
their variants.

4. Extending related methods, and other issues

But what if we don’t know the governing equations
underlying some data? In fact, what if it seems reasonable
to suspect that the equations won’t be simple, and perhaps
not even stable, over a period of time? In addition, what
are the impacts of noise? Brunton et al. (2016) showed that
in these model systems, introduction of small amounts of
noise does not disrupt equation discovery. In our own
explorations of SINDy, we find that noise at higher levels
– levels perhaps reasonable for data in cognitive science –
may render SINDy’s output unstable. Here we explore
some of these general issues. We briefly describe several
ways methods like SINDy may be enhanced. First, we con-
sider more direct integration of stochasticity. Second, we
propose use of SINDy-like techniques not as pure equation
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discovery but as system description. In each case, we
explore modifications of the model systems above.

4.1. Rigorous integration of stochasticity and dynamic fields

One challenge to a data science method like SINDy is
handling stochasticity gracefully. SINDy’s output can be
impressive for some models, but we find that wider explo-
ration of SINDy under noise leads to more graded out-
comes. We show this in Fig. 9 below. In fact, in the
human behavioral simulation in Fig. 8 above, we find that
SINDy is fairly stable in the face of some noise, but can
become quite unstable as noise increases. Fig. 9 shows
goodness of fit statistics of the obtained equations with
those expected (fit B with expected B).

These data suggest that SINDy is indeed quite sensitive
to noise in some contexts, and reconstruction is not
assured. A recent data science approach, that seeks to over-
come this limitation, is to infer stochastic dynamical sys-
tems from data. In this framework, drift and diffusion
processes are integrated with the general form of differen-
tial equations in order to better accommodate high
amounts of noise, potential irregularities in sampling, miss-
ing data, and more. The resulting technique has been ter-
med density tracking by quadrature (DTQ; Bhat et al.,
2018; Bhat, Madushani, & Rawat, 2016b). The underlying,
continuous-time model can be expressed as

dXt ¼ f driftðXtÞdt þ f diffusionðXtÞdWt: ð8Þ
Here dWt is an increment of Brownian motion, which we
can think of as a mean zero, variance dt Gaussian noise
process. The presence of the dWt term causes the resulting
model to be inherently probabilistic. Given an initial condi-
tion X0, the solution at time t;Xt, is a random variable.
Note that when f drift or f diffusion are nonlinear, the distribu-
tion of Xt can be multimodal and/or non-Gaussian.
Fig. 9. Left: We estimate the same model in Fig. 8, but under increasing lev
threshold (threshold ¼ þ=� 20), the SINDy fit becomes highly unstable, indica
collect more trials of this dynamic system, SINDy is much more robust to the h
hundred trials are collected, even under high noise, r ¼ 1:5. Right: If we explo
noise, SINDy obtains the relative complexity of these models. This suggests S
The two f functions encode the drift and diffusion com-
ponents of the model; these functions are allowed to
depend nonlinearly on the state variables of the system.
We estimate these functions using a matrix of transforma-
tions and regression coefficients, just as in SINDy. Note
that the SINDy model considered above is a special case
of this model in which f diffusion is identically zero.

Because the model is probabilistic, given time series
data, we can use the model to derive a likelihood function.
The parameters in this likelihood will be regression coeffi-
cients whose values pin down the functional forms of
f drift and f diffusion. We then find the parameters that numer-
ically maximize the log likelihood. After we fit the model in
this way, we can use it to estimate the probability P ðX tiÞ,
namely the probability density around some state of the
system at time ti.

This new method can be described as a kind of dynamic
field inference, in which the probability distribution around
system states at time increments can be computed. Bhat
and colleagues have had success in applying this to com-
plex behavioral data (Bhat, Madushani, & Rawat,
2016a), and designed an R package that currently works
on low-dimensional systems (Bhat et al., 2016b). This
framework can accommodate model selection by penaliz-
ing the likelihood function, equivalent to putting a prior
distribution on the coefficients. This approach is highly
suitable for modeling systems with significantly lower
signal-to-noise ratios than accommodated by SINDy.

One obvious way to accommodate noise is to collect
more data. This simple intuitive approach is illustrated
in the middle panel of Fig. 9. Let us assume again a high
level of noise (noise, r ¼ 1:5). In the middle panel, we
show the impact of trial number on model fit. By
increasing the number of trials, for a fixed value of the
noise parameter, the fit is again rendered perfectly, with
RMSE near 0.
els of noise. As noise is increased to a fraction of the system cumulative
ted by the increase in root mean squared error (RMSE). Middle: When we
igh level of noise used. Here we show RMSE dropping to near 0 if several
re variants of the Tuller et al. model (1994), then even under high levels of
INDy could be used as a descriptive tool for system complexity.
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4.2. New descriptive measures of systems

As noted in the prior section, injection of growing noise
can introduce considerable issues in these methods. In
much human behavioral data, in which we expect consider-
able variability, this will pose challenges to SINDy. There
are few existing applications of SINDy to raw data in real
research contexts. Our demonstration of SINDy here is no
exception to this trend, as we have focused on model sys-
tems. In our initial explorations of SINDy with raw data,
equations are not stable. In this case, it could be that
SINDy is simply incorrect about recovered equations. An
additional possibility is that the governing processes of a
human cognitive system are dynamically changing them-
selves. This would be suggested by graph-dynamic
approaches proposed by Saltzman and colleagues (e.g.,
Saltzman & Caplan, 2015; Saltzman & Munhall, 1992).
We could bridge their proposal, likening their graph-
theoretic structures to fit matrices such as B, leading to
the expectation that B itself is changing. In other words,
system descriptions of an extended cognitive task should
expect that context and task will lead to radical drift in
control dynamics.

In these cases, SINDy could be used instead as a
descriptive model. Let us take the same model from Sec-
tion 3.2, and use a level of noise that, as shown in Fig. 9,
causes the fit to become unreliable (noise, r ¼ 1:5). We
define a different model with an additional influence of a
second-order polynomial term:

xtþ1 ¼ xt þ ð�k þ xt þ x2t � x3t Þ þ Nð0; rÞ ð9Þ
In Fig. 9, right panel, we show that SINDy can distinguish
between these models in terms of complexity. We ran 100
models under each condition, and estimated the complexity
by counting the non-zero coefficients. These two samples
can now be treated as independent and their complexity
compared statistically. In this case, SINDy’s output implies
that the more complex model has a greater average recon-
structed complexity (M ¼ 6:34) than the simpler prior
model (M ¼ 5:29), tð198Þ ¼ 7:9; p < :00001.

Adapting SINDy in this way may permit researchers to
see the models as an approximate description of the sys-
tem’s underlying dynamics, rather than a reflection of the
precise underlying equations. By applying it in a windowed
fashion over data or simulations, this approach may also
permit identification of the onset or offset of particular con-
trol variables as a system’s dynamics are changing. It is also
suitable to a heavily experimental discipline such as cogni-
tive science, in which SINDy estimates could be compared
on a relative rather than absolute basis, to compare condi-
tions. This could facilitate a solution to the problem that
began this section. If one can neither know nor estimate
the precise equations, we can at least get a sense of their rel-
ative complexity under different contexts. We could draw
an analogy here with the concept of Kolmogorov complex-
ity, often difficult to define operationally except under
particular contexts. In the context of estimated differential
equations, Kolmogorov complexity could be analogized as
the number of non-zero coefficients. This sort of approach
was taken by Crutchfield (1994), under the term computa-
tional complexity, based on summary measures of a model
recovered from data.

4.3. Social dynamics: coupled logistic map

Applications of SINDy have extended to the reconstruc-
tion of biochemical networks (Mangan et al., 2016). The
intuition that drives this application is that the terms in
reconstructed equations reflect relationships across system
components. If two state variables input to SINDy come
from two different systems (or more), we can use the recov-
ered terms of the equations to define a graph structure. We
demonstrate an application of this here. We use a model of
social dynamics initially proposed by Buder (1991). He
used coupled logistic maps to describe how two model
“conversants” may follow each other in a behavioral space.
They are defined by two state variables x and y, and influ-
ence each other in the following way:

xtþ1 ¼ axxtð1� xtÞð1� py!xðxt � ytÞÞ
ytþ1 ¼ ayytð1� ytÞð1� px!yðyt � xtÞÞ

ð10Þ

The parameter px!y reflects the amount of connectivity
from system x to system y. When x and y maximally influ-
ence each other, px!y ¼ py!x ¼ 1. When px!y ¼ py!x ¼ 0,
these equations reduce to the standard logistic map shown
above, under the same control parameter a. For simplicity,
we assume the two control parameters ax and ay are equal.
In each equation, the right-most term consists of a differ-
ence. For y to x, the term in question is
ð1� py!xðxt � ytÞÞ. This term can be interpreted as forcing
x to move towards y according to their difference. The sys-
tems therefore move about their phase spaces and mutually
influence each other. Here we demonstrate that SINDy can
detect the presence and nature of influence in this simple
model of social dynamics. We also show that the terms
of the SINDy output, in B, can be visualized in a graph-
theoretic form, as a network of social dynamics.

We ran the same kind of simulation as for the logistic
map above. Varying a from 2:4 to 4 (Buder, 1991) in incre-
ments of :01, we extract three state variables of this system
ða; x; yÞ, and then seek a reconstruction through SINDy.
This serves as an interesting additional test of SINDy,
because the polynomial order of this “social” system is
quite high. When expanding the definition of xtþ1 in (10),
simplifying with py!x ¼ 1, we obtain

xtþ1 ¼ axt � 2ax2t þ ax3t þ axtyt � ax2t yt ð11Þ
This already requires a polynomial term up to the 4th
order. Indeed, in the original Buder (1991) formulation,
and in other applications of this model (Dale,
Warlaumont, & Richardson, 2011), we assume that the dis-
crete updates to these systems starts with x, and then with



Fig. 10. Left: When connectivity p is set to 0, the system reduces to a fully reconstructed logistic map, with x and y independent. Right: When connectivity
rises to 1, the x and y variables are intertwined – with mutual influences of various kinds. In general, we did not find that the terms on the right could
precisely reconstruct the coupled maps. Nevertheless, the nature of these terms and their interactions can be used as a new summary measure and model of
the interactions taking place in the coupled system.

Fig. 11. Using SINDy as a source of summary measures about social influences, we can estimate connectivity from B in two ways. Left: We can count the
number of terms with non-zero coefficients in B that contain both x and y. As connectivity p in the simulation increases, the number of such terms increases
in step. Right: We can also take the absolute magnitude of the influence between the systems, taking a sum over the values of multiplicative terms of B.
This measure is less stable, but reveals the same trend.

6 The sindyr package has a built-in graphing tool using igraph that
readers can explore themselves. This will generate these network diagrams
in R automatically if requested.
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y. This means that the output from xtþ1 should then be used
to expand the defining equations for the subsequent update
of y. The result is a formulation that requires a 7th order
polynomial:

ytþ1 ¼ ayt � 2ay2t þ ay3t þ aytðxtþ1Þ � ay2t ðxtþ1Þ ð12Þ

This is several orders of magnitude greater than the fits we
sought above with SINDy. In general, SINDy can find the
fit for x more effectively than that y. The y variable update
seems now to particularly challenge SINDy’s sparsification.
For reasons we discuss further below in the next section,
when we have many polynomial terms of this kind it
“washes out” the coefficients across a much larger set of col-
umns of B, and thus the sparsification may omit key terms.
Nevertheless, and as suggested in the prior section, SINDy
can be used as a source of summary measures. We illustrate
this in Fig. 10, showing the graph structure that emerges
from the SINDy algorithm.6 As the connectivity parameter
p rises from 0 to 1, we obtain a concomitant complexity in
the model. This complexity can be explored for multiplica-

tive terms that contain both x and y, indexing a nonlinear
connection between the systems. These nonlinear connec-
tions, of course required by ground-truth reconstruction
of the system, can be seen in the graph structures. We show



288 R. Dale, H.S. Bhat / Cognitive Systems Research 52 (2018) 275–290
the precise numbers of such multiplicative terms in Fig. 11
across values of connectivity p.

In sum, seeking summary measures from SINDy, and
visualizing B, permit exploration of interactive dynamics
between social models. In principle such an approach could
be taken for human data in which two or more participants
generate time series of various behaviors. SINDy may sup-
ply a new and interesting basis on which to explore such
social dynamics.

5. Conclusion

There are many emerging approaches to “computa-
tional scientific methods,” using machine learning or other
techniques to recover equations from data (Sozou et al.,
2017). The model we showcase here has certain desirable
properties. It is extremely simple to deploy. It requires only
a handful of adjustments to raw data, and the process of
finding coefficients B does not require high-performance
computing resources. With these in hand, a high-
dimensional space of features, obtained from raw data X,
can be explored. Few assumptions about the underlying
form of the governing equations are needed. And this is
implemented in just a few lines of code. Our demonstra-
tions also illustrate the value in manipulating and exploring
dynamic models as subjects of study in and of themselves.
By creating new datasets under varying conditions, we are
able to validate and expand these new analysis techniques.
Such a strategy is an important part of expanding the
toolkit of dynamic systems methods (cf. discussion in this
issue: Spivey, 2018).

We did demonstrate that the approach can suffer under
noise. It also requires distinct application in discrete
dynamic systems, illustrated in the logistic map and the
Lorenz system. In the former model, we take the first-
order derivative to be the next values of the system vari-
ables. In the latter, we use numeric differentiation. These
modeling choices are not necessarily clearly motivated,
and still have to be set by the researcher. In addition, the
thresholding of the coefficients may be better implemented
by standard regularization techniques, such as LASSO
(Tibshirani, 1996).

We proposed three possible extensions of this specific
approach. By more elegantly integrating stochasticity in a
continuous-field approach, we could obtain a more com-
pelling recovery of the source system, including systems
that are not sparse, but rather radically interactive. Second,
we showcased how something like SINDy could serve as a
basis for new descriptive measures of a system being stud-
ied in the lab. In the cognitive context, for example, SIN-
Dy’s output may help describe the relative complexity of
behavior in different contexts. Finally, we demonstrated
that SINDy can be used to explore multiple systems, and
map out potential interactive relationships that lie between
them. Here models get considerably more complex, and the
value of using SINDy as a source of new aggregate mea-
sures may be again useful.
These illustrations and concerns raised lead to a set of
important pointers for application of SINDy to a real
research context. To a great extent, these are open to future
investigation. Application of these techniques to raw, noisy
datasets is an important next step. When doing so, the
researcher should bear in mind the following three con-
cerns, as practical recommendations that are preliminary
in nature.

1. Time series length. SINDy can work with surprisingly
short time series (in our models 20–30 samples, across
just 100 trials), but the more densely sampled the
dynamics, the better the observed fit. The general lesson
here is that if the observed time series thoroughly
explores the underlying system’s phase space—including
stable/unstable equilibria, periodic orbits, and attrac-
tors—then SINDy will have a much better chance of
reconstructing the right equations of motion. For exam-
ple, in the logistic map case, if we only sampled from
control parameters that had a point attractor, the fit is
based on less variance than if we sampled from values
of the parameter in chaotic regimes.

2. System drift. If the system’s underlying dynamics are
changing, if the researcher suspects drift, a single appli-
cation of SINDy is unlikely to be interpretable. In this
case, the researcher can explore a sliding-window
approach. Such an option is offered in the sindyr

package that the authors created. A single time series
can be segmented using a sliding window. The
researcher can explore the extent to which drift is taking
place, and may derive new dependent variables that
align with an experimental task or stimuli.

3. Unknown and complex models. We had to include
parameters a (for the logistic map) and k (for the choice
model), but an experimenter may not know the underly-
ing control variables. In these cases, an experimenter
may be able to propose a set of parameters (similar to
priors, in the Bayesian sense), and adjust a SINDy
model to capture behavioral dynamics. Researchers
using trial conditions could propose specific fixed con-
trol variables to input into SINDy. Finally, in both
unknown and complex systems, the threshold selection
will not be obvious, and should be done by exploration.
With each added polynomial order, the threshold may
need to be scaled down to avoid iterative removal of
viable terms. This is because, as the dimensionality of
the feature space increases, coefficient magnitudes tend
to be lower and more evenly distributed. This may be
due to the iterative thresholding by least squares; a
LASSO approach or the vector-field extensions we have
described would be an important next step in general.

There is much left to do, of course. For example, a sys-
tematic comparison of these methods is still needed. It
would be of value simply to compare the predictions of
these methods with basic machine learning tools. A simple
autoregressive model may compete with fits from recovered
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equations, suggesting that while equations provide a cer-
tain epistemological inspiration (such as expressing nonlin-
earities), their practical role could be humbler. This is
especially true in the application of these methods to raw
behavioral data from the lab or beyond it. The interactions
among brain, behavior, and environment are robust
(Chemero, 2011; Favela & Chemero, 2015). As noted
above, human behaviors may undergo sudden drift in the
equations that best fit data, through perturbation from
environmental sources or even from dynamic adaptation
to a task. For example, Dixon, Kelty-Stephen, and others
(Dixon & Bangert, 2004; Dixon, Stephen, Boncoddo, &
Anastas, 2010; Stephen, Dixon, & Isenhower, 2009) have
studied how the cognitive system may show a pronounced
“representational reorganization” during problem solving.
In some of these studies, reorganization is detected through
dynamics of body movement (such as movements of the
hand). This work suggests that these data science
approaches may need gentler summary measures, rather
than pure formulaic outcomes.

In this paper, we focused on introducing this data
science approach under very limiting assumptions about
known systems. A crucial next step in all these domains
is to move into raw data, perhaps even data for which
the governing equations are not at all clear. This could
have profound theoretical relevance for cognitive systems
research (Favela, 2014). Finding lower-order descriptions
that can encapsulate the high-dimensional complexity of
human behavior is a long sought goal of our field. Using
emerging data science tools may offer new ideas regarding
what lower-order descriptions can do in a wide variety of
contexts in which these data are collected.
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