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Recent studies of dyadic interaction have examined phenomena of synchronization, entrainment, align-
ment, and convergence. All these forms of behavioral matching have been hypothesized to play a
supportive role in establishing coordination and common ground between interlocutors. In the present
study, evidence is found for a new kind of coordination termed complexity matching. Temporal dynamics
in conversational speech signals were analyzed through time series of acoustic onset events. Timing in
periods of acoustic energy was found to exhibit behavioral matching that reflects complementary timing
in turn-taking. In addition, acoustic onset times were found to exhibit power law clustering across a range
of timescales, and these power law functions were found to exhibit complexity matching that is distinct
from behavioral matching. Complexity matching is discussed in terms of interactive alignment and other
theoretical principles that lead to new hypotheses about information exchange in dyadic conversation and
interaction in general.
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Conversation is a complex coordination of human behavior
(Shockley, Richardson, & Dale, 2009). Interlocutors need to attend
to each other flexibly and continuously over the course of conver-
sation so that they know what to say and when to say it in order to
satisfy their conversational goals. One prominent model of dyadic
conversation is Pickering and Garrod’s (2004) interactive align-
ment model. The model emphasizes the importance of aligning
different linguistic representations and holds that interlocutors
match representations at different linguistic levels.
There are numerous schemes for dividing linguistic processing

into levels, but Pickering and Garrod (2004) discussed six: pho-
netic, phonological, lexical, syntactic, semantic, and situational. In
support of this model, a range of studies has shown that interloc-
utors match speech behaviors at various scales of linguistic struc-
ture. Interlocutors have been shown to match productions of pho-
nemes (Pardo, 2006), speech pauses (Cappella & Planalp, 1981),
syntactic structures (Bock, 1986), and descriptive utterances (Gar-
rod & Anderson, 1987). In these cases, there are direct correspon-
dences between particular instances of behaviors, such as mimick-
ing individual utterances, syntactic phrasings, accented words, and

so on. We use the term behavioral matching to refer to these
phenomena alternately known as alignment, entrainment, conver-
gence, and synchronization (Louwerse, Dale, Bard, & Jeuniaux,
2012).
A growing body of literature supports the existence of behav-

ioral matching, but the specifics and interpretation are matters of
debate. Some argue that behavioral matching and related processes
are integral to dyadic interactions (Pickering & Garrod, 2004),
while others emphasize the role of behavioral matching in facili-
tating mutual comprehension (Brennan & Clark, 1996; Brennan &
Hanna, 2009). Others argue that principles and processes of per-
ception and action give rise to behavioral matching (Richardson,
Marsh, Isenhower, Goodman, & Schmidt, 2007; Sebanz, Bekker-
ing, & Knoblich, 2006). Still others contend that human commu-
nication is a general framework for situated action in which
interlocutors maximize detection and sensitivity to others (Such-
man, 2007).
These ongoing debates have been useful and informative be-

cause they suggest that behavioral matching plays some role in
establishing common ground and, more generally, facilitating
communication. However, opportunities for behavioral matching
in natural conversation are limited because interlocutors do not
simply mirror each other’s behaviors. Each person makes unique,
individual contributions to dyadic interactions, and effective com-
munication necessitates that interlocutors share common ground
and coordinate behaviors (cf. Healey, Purver, & Howes, 2014;
Mills, 2014). Thus many aspects of conversational behavior may
be expressed by more indirect, subtle forms of coordination. Even
turn-taking is more complex than synchronization or syncopation.
Turns often do not alternate cleanly and evenly (Stivers et al.,
2009), and interlocutors often speak and gesture simultaneously
during periods of so-called “back channeling” (McClave, 2000).
The irregular, complex nature of dyadic interaction raises the

question of whether behavioral matching may be generalized to more
indirect forms of matching. That is, the drive to establish common
ground and facilitate communication may be addressed through other
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means that can be viewed as extensions of behavioral matching. One
natural extension is distributional matching—the idea that behaviors
maymatch at the level of statistical, ensemble characterizations, rather
than the level of particular behavioral acts. For instance, mean speech
rates may converge during conversations (Webb, 1969), or two inter-
locutors may converge in their proportions of slang expressions,
without directly matching each other slang for slang.
The concept of distributional matching is consistent with Pickering

and Garrod’s (2004) interactive alignment model. Perhaps the best
example comes from the well-known phenomenon of syntactic prim-
ing (Bock, 1986; Pickering & Branigan, 1998, 1999), in which hear-
ing or seeing the usage of a given syntactic form (e.g., active vs.
passive) increases the likelihood that speakers will use it themselves.
Syntactic priming can arise from behavioral matching or distribu-
tional matching. In the latter case, the probability distributions over
syntactic forms may converge between interlocutors (see Jaeger &
Snider, 2008).
The hypothesis of distributional matching takes on a new dimen-

sion when the distributions being matched follow power law functions
(Clauset, Shalizi, & Newman, 2009). A power law function expresses
one variable as a nonlinear function of another variable raised to a
power, f(x) ! x". The heterogeneities and irregularities of language
behaviors are reflected in many different power laws. For instance,
power law relations are found in frequencies of word usage (Zipf,
1949), frequencies of n-grams in text corpora (Kello & Beltz, 2009),
frequencies of syntactic links to words (Ferrer-i-Cancho, Solé, &
Köhler, 2004), correlations and burstiness across vowels/consonants,
letters, words, and topics (Altmann, Cristadoro, & Degli Esposti,
2012), and spectral density of fluctuations in music and human speech
(Voss & Clarke, 1978). We provide an illustrative example in the next
section, but suffice it to say here that these power laws reflect the
heterogeneity of language in terms of variability across a wide range
of measurement scales. They correspond to the irregularity of lan-
guage in terms of rough stochastic patterns, unlike the highly regular
fractals (i.e., power laws) of snowflakes and Mandelbrot sets.
In the present study, we find evidence for a new power law

distribution in conversational speech signals. The power law is hy-
pothesized to reflect hierarchical clustering and levels of linguistic
information in conversational speech (Grosjean, Grosjean, & Lane,
1979), akin to levels proposed for the interactive alignment model.
The speech data come from dyadic conversations designed to be
either affiliative or argumentative (Paxton & Dale, 2013), and the
speech signals are analyzed in terms of their temporal dynamics, as
captured by acoustic onset events and subsequent periods of acoustic
energy.
The power law in event clustering is measured by the Allan

Factor (AF) function, which computes coefficients of variation
across multiple timescales. We find that AF functions measured
from interlocutor speech signals converge in dyadic conversations,
particularly for affiliative conversations and not argumentative
conversations. We call this convergence complexity matching as a
special case of distributional matching when distributions are
power laws. The term comes from studies in statistical mechanics
(West, Geneston, & Grigolini, 2008) showing maximal informa-
tion exchange between coupled complex systems that individually
produce similar power laws.
We test whether conversational speech signals exhibit the condi-

tions predicted from statistical mechanics on the approach that com-
plexity matching can provide a unique angle into naturalistic conver-

sation. We compare behavioral and complexity matching to test
whether they make distinct contributions toward explaining dyadic
interaction, and whether complexity matching yields useful evidence
beyond behavioral matching.

Power Law Clustering in Conversational Speech

A simple way to approximately describe a power law distribution
is to say that variability occurs across a wide range of measurement
scales, including timescales. For the latter, imagine that a time series
of measurements is windowed and the average measured value is
computed for each window of size S. Variability across scales means
that measures of variance scale up with window size S, e.g., small
variations for millisecond windows, larger variations over seconds,
even larger variations over hours, and so on. Variability across scales
is unexpected for most types of simple systems. For instance, if one
measures the temperature fluctuations in a refrigerator, variations
would actually decrease with larger time windows, because larger
windows would yield averages that converge on or near the temper-
ature setting.
Variability that spans measurement scales is indicative of power

laws, and such power laws will emerge from more complex systems,
namely, ones that display hierarchically nested structures and pro-
cesses (Simon, 1973). In the case of language, sentences are collec-
tions of syntactic phrases, phrases of words, words of syllables,
syllables of phonemes, and so on. Such nested levels of linguistic
representation are integrated in the interactive alignment model, as
illustrated in Figure 1. We therefore expect the hierarchical nesting of
language to be physically manifested as power laws in speech signals.
Hierarchical nesting in speech signals can be illustrated as follows.

At the coarsest timescales, when two people converse, each interloc-
utor produces turns—long, clustered periods of acoustic speech en-
ergy interspersed with mostly no acoustic energy while the other
person is talking. At finer timescales, there are breaks in the signal due
to thinking time, phrase boundaries, rhetorical effects, and the like. At
still finer timescales, breaks occur sometimes at word boundaries, and
sometimes at phonemes with little or no sonority, such as plosive
consonants (e.g., p, t, k, b, d, g), quiet fricatives (e.g., f, h, th), and
even voiced fricatives and nasal stops in some cases (e.g., v, m, n, ng).
All of these breaks are defined as falling below some threshold of
acoustic energy, i.e., we do not assume total silence or even a total
lack of perceptible sound during breaks.
The three illustrative scales just listed are visualized in the speech

waveform displayed in Figure 2. It is important to note that one could
posit additional or different scales as well. Whatever the case, their
physical manifestations are likely to overlap and blend such that one
simply observes clusters of acoustic energy across a continuous range
of scales in the raw speech signal. In fact, a continuous range of scales
is expected to emerge when interactions propagate across levels of
representation (Holden, Van Orden, & Turvey, 2009; Mitzenmacher,
2004), as posited in the interactive alignment model. Phonetic pro-
cesses interact with lexical processes, which interact with syntactic
processes and feedback to phonetic processes, and so on.

Complexity Matching in Speech Signal Clustering

Our discussion so far leads us to expect power law clustering in
speech signals due to the hierarchical nesting of language repre-
sentations and processes. Thus we need a method for measuring
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and quantifying clustering in speech signals across different time-
scales. Clustering is expected specifically in the timing of periods
of acoustic energy interspersed with breaks as defined by some
threshold. Such temporal clustering can be measured in the onset

times when acoustic energy crosses from below to above thresh-
old. Acoustic onset times are not only appropriate for measuring
temporal clustering, but they also are highly salient and important
events in speech perception (Cummins & Port, 1998; Cutting &

Figure 1. Left: Pickering and Garrod’s (2004) schematic representation of the stages of comprehension and
production processes according to the interactive alignment model. Right: An illustration of the nesting of
different scales of linguistic representations, using four levels of the six from the interactive alignment model:
phonetic, lexical, semantic, and situation model. Left panel reprinted from “Toward a Mechanistic Psychology
of Dialogue,” by M. J. Pickering and S. Garrod, 2004, Behavioral and Brain Sciences, 27, p. 177. Copyright
2004 by Cambridge University Press.

Phonetic 

Lexical 

Semantic 

Situation ModelA  

B  

C  

Figure 2. An example segment of a conversational speech signal, shown at three different levels of temporal
resolution. A: The longest scale corresponds with conversational turns, and brackets show roughly the timescales
at which different levels of linguistic representation reside: phonetic, lexical, semantic, and situation model. B:
The middle scale illustrates, e.g., thinking pauses and phrase boundaries. C: The shortest scale illustrates word,
syllable, and phoneme boundaries. Vertical lines shown for each speech signal signify acoustic onsets relative
to a threshold chosen by visual inspection. See the online article for a color version of this figure.
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Rosner, 1974; Liberman, Harris, Hoffman, & Griffith, 1957).
Clustering in acoustic onset times is visible in Figure 2.
The interactive alignment model holds that interlocutors “align”

representations across levels of linguistic processing. The partic-
ular nature of alignment is an ongoing area of research, and as
mentioned earlier, behavioral matching is one manifestation of
alignment that is well-documented in the literature (Louwerse et
al., 2012). But also, as mentioned earlier, behavioral matching is
limited because direct correspondences alone cannot explain the
rich behavioral diversity in natural conversations (e.g., Healey,
2008; Howes, Healey, & Purver, 2010).
Temporal clustering of acoustic onsets across scales, as a phys-

ical expression of linguistic processing across levels of represen-
tation, affords the possibility for a kind of distributional matching
distinct from behavioral matching. The overall amount of temporal
clustering can be quantified as a function of timescale, as we
explain more formally below. Conversational speech signals may
converge in terms of the distribution of temporal clustering across
timescales. Such convergence would constitute a complex coupling
in the dynamics of linguistic processing. This coupling would be
complex partly because it would go beyond synchronization and
other simple phase relations between time series, and partly be-
cause it would constitute the coupling of two power law distribu-
tions that reflect nested, interactive scales of processing.
Power law distributions are defining of complex systems in

general (Sales-Pardo, Guimera, Moreira, & Amaral, 2007; Simon,
1977). Specifically, a complex system is one in which microscopic
events may cascade up to alter macroscopic patterns of activity,
which in turn may constrain and shape its microscopic events
(Stanley, 1987). By this definition, both humans and human lan-
guages are demonstrably complex systems (The “Five Graces
Group” et al., 2009; Kugler & Turvey, 1987; Mitchell, 2009;
Spivey, 2007; Swenson & Turvey, 1991). Molecular and cellular
events cascade up to affect behavior via myriad genetic and
physiological processes, and behavior helps shape those processes
via evolution and learning, for example. Likewise, microscopic
changes in phonetic features may alter entire words, sentences, and
conversations as macroscopic patterns, and the latter provide
higher level constraints on how phonemes are phonetically real-
ized.
Classes of complex systems can be formalized statistically,

relative to the dynamics of their interacting components. West et
al. (2008) recently analyzed the coupling of complex systems in
terms of their event dynamics, which amounts to temporal clus-
tering of point processes analogous to acoustic onsets. Interest-
ingly, analyses have shown information exchange between cou-
pled systems to be maximal when the exponents of their power
laws are similar (Aquino, Bologna, Grigolini, & West, 2010;
Aquino, Bologna, West, & Grigolini, 2011; Turalska, West, &
Grigolini, 2011). For power laws in the temporal clustering of
point processes, convergence of exponents corresponds with con-
vergence in the amounts of temporal clustering across timescales.
Thus West et al. (2008) provided independent theory and rationale
for expecting convergence in the temporal clustering of conversa-
tional speech signals—under these conditions, information ex-
change should be maximized between interlocutors as complex
systems (see also Stephen & Dixon, 2011; Stephen, Stepp, Dixon,
& Turvey, 2008).

The formal analysis conducted by West et al. (2008) relies on
statistical physics and mechanics and its elaboration is outside the
scope of the current article. However, we can draw an intuitive
analogy with simple oscillators designed to illustrate coupling
beyond synchronization. Imagine two metronomes whose kine-
matics are coupled through a physical medium such as a sliding
platform (Figure 3a). Provided that their frequencies are suffi-
ciently similar, and coupling is sufficiently strong, the beats of the
metronomes will tend to synchronize over time (Kelso, 1981;
Strogatz & Mirollo, 1991). The phase-coupled oscillations that
result from these interacting forces can be seen as idealized forms
of behavioral matching, and a number of dyadic interaction studies
have drawn this parallel (for a review, see Schmidt & Richardson,
2008).
Now imagine two sets of metronomes at each end of the plat-

form (Figure 3b) whose resonant frequencies span a wide range of
timescales and do not correspond one-to-one across the two ends
of the platform. Coupling may still yield a system for which
synchronization is an inherently low energy state, but synchroni-
zation and other simple phase relations may no longer be suffi-
ciently strong attractors to create stable dynamical states of the
system. This is more likely to be true especially when coupling is
relatively weak. In such cases, the system instead is prone to
exhibiting intermittent, irregular transitions from one metastable
state to the next (Kelso, 1995). Such complex dynamics are readily
observable in systems as simple as coupled oscillators, and cou-
pled oscillators provide only a simple model of human interlocu-
tors. Thus the metronomes serve to illustrate how complex cou-
plings are not exotic or rare but, rather, are quite expected for
interactions between such richly heterogeneous systems like hu-
mans.
Expectations of phase couplings and more complex couplings

lead us to predict behavioral matching and complexity matching in
human interactions. To our knowledge, this prediction has not
been tested previously for conversational interactions, but we can
find support for a similar hypothesis in human perceptual-motor
interactions (Coey, Washburn, & Richardson, in press; Marmelat
& Delignières, 2012). Marmelat and Delignières (2012) recently

B A 

Figure 3. Examples of synchronization and behavioral matching with toy
metronome systems. A: Illustration of two metronomes interacting along a
sliding platform, as a simple model of synchronization and a form of
behavioral matching. B: Illustration of interactions between multiple met-
ronomes with differing frequencies, to aid the intuition of complexity
matching.

Th
is
do
cu
m
en
ti
s
co
py
rig
ht
ed
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
lA
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
ish
er
s.

Th
is
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
rt
he
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
tt
o
be
di
ss
em
in
at
ed
br
oa
dl
y.

2307TEMPORAL CLUSTERING IN SPEECH ACOUSTICS



conducted an experiment in which each participant in a dyad
swung a hand-held pendulum, with instructions to swing in syn-
chrony. Synchronization is a form of behavioral matching, but
deviations from synchrony were analyzed for power law fluctua-
tions in the form of 1/f! noise. Results showed that ! estimates for
each member of a dyad were correlated to the extent that coupling
was facilitated by visual and physical contact. These ! correlations
served as a direct measure of complexity matching, and they could
not be explained in terms of behavioral matching because dyadic
time series of deviations from synchrony were uncorrelated at all
lags—i.e., there were no cross-correlations.

Current Study

The new contributions of the current study are tests of (a) power
law clustering in the temporal patterning of acoustic onsets in
conversational speech and (b) complexity matching in the tempo-
ral clustering of speech across timescales. Power law clustering is
expected to manifest due to the hierarchical nature of language
processes. Complexity matching is expected to extend and com-
plement behavioral matching, as part of a broader basis for inter-
active alignment that enhances communication through increased
information exchange.
Our study was designed to investigate complexity matching

through a number of different conditions and analyses. First, we
analyzed data from a recent study by Paxton and Dale (2013), in
which participants who previously did not know each other were
asked to have two conversations (order counterbalanced). One was a
casual, affiliative interaction about popular media. The other was on
provocative issues based on participants’ closely held beliefs and
designed to evoke more argumentative conversations. Beforehand,
participants were given questionnaires to gauge their opinions on
these provocative issues, and specific issues were chosen if partici-
pants had strong but differing opinions about them. Partners were
instructed to converse for 10 min in each condition, which provided
ample time for long stretches of speech to be analyzed. The original
aim of the study was to investigate alignment in asymmetric contexts,
that is, interactions between interlocutors who have conflicting, dif-
fering, or opposing goals and opinions.
These experimental data serve the current goals quite well,

because the time series that can be extracted from audio data are
long enough to afford measurements of temporal clustering across
a wide range of scales. In addition, we can test for a relationship
between complexity matching and a high-level discourse con-
straint: conversation type. Testing for such a relationship is im-
portant for providing converging evidence that temporal clustering
of acoustic onsets is reflective of levels of linguistic processing
rather than just matching of low-level acoustic properties of
speech. The experiment also allowed us to compare matches
between two speech signals from an originally paired dyad, with
mismatches between signals from two different dyads. The latter
provides a baseline for measuring complexity matching above
chance and is a common baseline among dyadic interaction re-
searchers (e.g., Bernieri, Reznick, & Rosenthal, 1988).
Another important feature of the experiment by Paxton and Dale

(2013) is that it allows us to compare our measure of complexity
matching with a more traditional measure of behavioral matching,
where the latter can be quantified through cross-correlations in
speech signals. As elaborated below, greater behavioral matching

in our case corresponds to the negative peak of the cross-
correlation function, which reflects the complementary turn-taking
relationship between the temporal patterns of acoustic speech
energy produced by each member of a dyadic conversation. We
directly test whether complexity matching can be reduced and
attributed to behavioral matching as measured by negative peaks in
cross-correlations, or whether the two reflect distinct aspects of
coordination in dyadic conversation.

Method

Participants

A total of 28 undergraduate students (mean age " 20.14 years;
females " 22) from the University of California, Merced partici-
pated in return for extra course credit. Individual participants
signed up for time slots anonymously, and participants were not
informed of their partner’s identity beforehand. Dyads included
eight female-female, six mixed-sex pairings, and no male-male
pairings (by chance; the uneven breakdown of gender pairings
prohibited a post hoc analysis of gender). All participants reported
conversational fluency in English and normal or corrected hearing
and vision. Participants also reported their native language as
English (n " 10), Spanish (n " 10), or other (n " 6; an additional
two participants did not disclose their native language).

Procedures

Before conversing with one another, each participant completed
a brief series of questionnaires, including an opinion survey on
political, social, and personal topics (e.g., abortion, death penalty,
gay/lesbian marriage, legalization of marijuana). For each topic,
participants were asked to write a brief synopsis of their opinion
and mark how strongly they held their opinion from 1 (feel very
weakly) to 4 (feel very strongly) on a Likert-style scale. Experi-
menters determined the topic of argument by comparing the two
participants’ survey answers to identify the topic on which partic-
ipants held strong but opposing views. This topic was chosen as
the dyad’s argumentative prompt, given along with an instruction
to convince one another of their opinion. Two additional prompts
were also selected by those criteria but were given only if the
participants were unable to continue the conversation on the topic
at hand. Of the 14 dyads analyzed here, 10 required additional
prompts (secondary " 9; tertiary " 1).
In addition to the argumentative conversation, each dyad also

had an affiliative conversation. The affiliative prompt instructed
each dyad to identify and discuss popular media that both partic-
ipants enjoyed. Affiliative prompts were designed to emphasize
the common ground between partners, whereas the argumentative
prompts were designed to emphasize their differences of opinion.
Following the questionnaires, participants were brought to-

gether in a private room and seated facing each other. To provide
an opportunity for partners to become acquainted with each other,
they were left alone for about 3 min to introduce themselves
outside the context of the experiment, without yet knowing the
nature of the experimental task. To make introductions as natural
as possible, participants were told that experimenter had to step out
of the room to complete last-minute paperwork before beginning
the experiment.
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After the introduction period, the experimenter entered the room
and delivered the first conversation prompt. The order of prompts
was counterbalanced across dyads, and participants were not in-
formed of upcoming prompts. During each 10-min conversation,
the experimenter monitored recording equipment from a seat on
the periphery of participants’ range of vision. After each conver-
sation, participants were separated and asked to complete postcon-
versation questionnaires. At the end of the experiment, participants
were thanked and debriefed.

Apparatus, Data Collection, and Data Preparation
Conversations were recorded on a Canon Vixia HF M31 HD

Camcorder, mounted on a Sunpak PlatinumPlus 600PG tripod.
Audio for each participant was recorded separately at 44-kHz
sample rate, using an Azden CAM-3 mixer and Audio-Technica
ATR 3350 lapel microphones affixed to the upper portion of each
participant’s shirt. Two audio files were recorded per conversation
(one for each interlocutor), which yielded four files per dyad and
56 files altogether across the 14 dyads.
After truncating audio files to contain only the conversations,

Audacity was used to remove nonspeech signals, as well as any
partner cross-talk so that each file contained only one participant’s
speech signal. The Audacity “sound finder” was then used to
locate acoustic onset and offset events in each file. The signal/no-
signal threshold of acoustic intensity was set at –30 db for all
dyads, which was judged to be the lowest threshold that resulted in
less than !5% spurious onset events. This threshold yielded an
average of 764 paired onset and offset events per partner, per
conversation. For every audio file, the resulting event time series
was highly irregular and clustered, based on visual inspection.
Each event series was unique, as expected given that each partner
made unique contributions to their conversations. However, we are
interested in statistical quantities that abstract away from particular
event times and characterize their temporal properties.

Interevent Intervals
The interactive alignment model, along with its hierarchically

nested levels of linguistic processing, leads us to predict complex-
ity matching in the temporal clustering of acoustic onset events.
However, West et al. (2008) showed that complex systems in
general are expected to exhibit complexity matching when their
interevent intervals (IEIs) are power law distributed with an ex-
ponent near two, P(IEI) ! 1/IEI", where " ! 2. West et al.’s
analysis suggests that we test IEIs for the predicted power law.
A histogram of IEIs was computed for the time series from each

participant in each conversation, where the position of the smallest
bin was set relative to the shortest IEI value in each given time
series. The nine subsequent bins were logarithmically spaced to
capture IEIs of all lengths for each time series. Logarithmic spac-
ing accounted for the anticipated power law in IEI distributions—
that is, greatest resolution in the histogram is needed for at the
small end of the scale because the vast majority of IEIs are
relatively short, and resolution can become coarser as IEIs become
larger and less frequent.
Figure 4 shows the resulting histograms for each participant,

plotted together in a single graph. Plotting individual histo-
grams together provides a picture of the overall trend of the

distributions, as well as the individual variability around that
trend. The figure shows a clear trend of a negatively sloped line
in logarithmic coordinates that flattens out for the shortest IEI
values on the left. The slope of the trend is about –2 for both
conversation types, as can be seen by comparing with the
dashed line that has a slope of exactly –2. Thus the data closely
resemble the theoretically derived precondition for complexity
matching,1 i.e., the power law P(IEI) ! 1/IEI", where " ! 2.

Temporal Clustering in Acoustic Onsets
To quantify temporal clustering in acoustic onsets and test for a

power law across timescales, we adopted Allan Factor (AF) anal-
ysis that has been used to measure temporal clustering in neural
spike trains (Teich, Heneghan, Lowen, Ozaki, & Kaplan, 1997).
Spikes and acoustic onsets are both examples of point processes,
i.e., time series of events treated as occurring at instantaneous
points in time. A Poisson process is one whose events occur
unpredictably through time, i.e., for which knowledge of any and
all event times up to a given point in time t provides no informa-
tion about when future events may occur. AF is a statistical method
that distinguishes between Poisson processes and those whose
events occur nonrandomly. In our case, we are interested in non-
Poisson processes whose events cluster at different timescales
more than would be expected by a Poisson process.
AF analysis is partly illustrated in Figure 2. Time series are tiled

with adjacent windows of given size T; in the figure, each bracket
represents one window of a given size. Events are simply counted
within each window, and a measure of variance—AF variance,
A(T)—is derived from the differences in counts between adjacent

1 IEI distributions were tested via multimodel inference using Akaike
information criterion (AIC) values and maximum-likelihood estimation
and showed that the lognormal function was most likely to generate the
distributions. The lognormal distribution is heavy-tailed and known to
provide good fits to power law distributions with truncated tails such as the
IEI distributions (Edwards, 2008).
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Figure 4. Interevent interval (IEI) probability density functions for indi-
vidual interlocutors in individual conversations, plotted in logarithmic
coordinates using logarithmic binning. Dashed line shows idealized slope
of –2 (per West, Geneston, & Grigolini, 2008).
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windows. A(T) is calculated for a range of window sizes (i.e.,
timescales T), and Poisson processes are those for which A(T) !
1 for all T. Clustering at a given scale results in A(T) " 1, and
more specifically, clustering across scales means that A(T) ! T#,
where # " 0. Finally, complexity matching is measured as the
difference between two A(T) functions, where more matching
corresponds to smaller differences.

Formal Description of AF Analysis

A formal description of AF analysis is as follows. A given point
process is segmented into M adjacent windows of size T (enough
to span the entire series), and the number of events Nj is counted
within each window indexed by j $ 1 to M. The differences in
counts between adjacent windows of a given size T is computed as
d(T) $ Nj % 1(T) & Nj(T). d(T) values are computed for each of a
range of values for T. The AF variance A(T) for a given timescale
T is the expected value of the squared differences, normalized by
mean counts of events per window (i.e., a type of coefficient of
variation),

A(T)!
!d(T)2"
2!N(T)"

.

Poisson processes yield A(T) ! 1 for all T, whereas power law
clustering yields A(T) ! (T/T1)#, where T1 is the smallest time
scale considered and # the exponent of the scaling relation. Point
processes with # ! 0 are Poisson-distributed, whereas power law
clustering means meaning # " 0 over the measureable range of
timescales (Thurner et al., 1997).
A(T) was computed for each event time series from each inter-

locutor in each conversation. Each time series was 10 min long,
and time windows varied as a power of 2, T $ 2t where t ranged
from 4 to 12. The resulting timescales ranged from 160 ms to 41 s.
Smaller timescales were excluded because they are heavily af-
fected by measurement error, and larger timescales could not be
reliably estimated given the length of time series. A(T) values were
averaged across participants for each conversation, and averages
are plotted as a function of T in Figure 5.2

Results of AF Analysis

A clear power law is evident in the roughly linear relationship in
logarithmic coordinates for both conversation types. This power
law is evidence of nested clustering of events over the measured
timescales, as expected for nested language processes. The expo-
nent of the AF power law was estimated for each individual time
series by taking the slope of a regression line fit to each AF
function in logarithmic coordinates. Mean exponent estimates for
affiliative conversations (M $ .53, SE $ .02) were reliably less
than those for argumentative conversation (M $ .63, SE $ .02),
t(27) $ 4.57, p ' .001. This effect can be seen in Figure 5 as
deriving from A(T) differences at the largest timescales. In gen-
eral, this is evidence that the clustering of acoustic onsets reflects
linguistic processing during conversations, rather than purely
acoustic structure.
More specifically, results showed greater temporal clustering of

onsets in argumentative conversations relative to affiliative ones,
at longer timescales. Longer timescales mainly reflect turn-taking

dynamics, which suggests that there were fewer, longer turns in
argumentative conversations. To confirm this interpretation of the
observed difference in AF functions, we compared the number and
mean duration of IEIs greater than 4 s. Four seconds was approx-
imately where the AF functions diverged and was a cutoff that
should capture mostly turn intervals, i.e., an utterance without a
break in acoustic energy, followed by a pause before the partner
begins the next turn. We did not expect this automated method to
capture turns perfectly—some turns will be missed or cutoff, and
some intervals will reflect utterances within turns—but it is safe to
assume that the majority of these few very long intervals (less than
5% of all intervals on average) mostly correspond with turns. As
expected, estimated turns for argumentative conversations were
found to be fewer (M $ 21.7 vs. M $ 26.8), t(27) $ 2.9, p ' .01,
and longer (M $ 12.6 vs. M $ 8.0), t(27) $ 5.2, p ' .001,
compared with affiliative conversations.

Complexity Matching

The previous two sections established two preconditions necessary
to test for complexity matching, i.e., (a) power law distributions in
IEIs that approach an exponent of two and (b) power law clustering of
acoustic onsets, as expressed in the AF function, that ostensibly
reflects the hierarchical nesting of linguistic processing during con-
versation. Now, to test for complexity matching, we need a measure
of similarity between two AF functions and a baseline for the amount
of complexity matching expected by chance.
Our measure of AF similarity is the summed absolute difference

between two AF functions a and b, with a negative log transfor-
mation:

Da,b ! "#
T
log#A(Ta)"A(Tb)#

2 For example code, please see http://cogmech.ucmerced.edu/downloads
.html

Figure 5. Mean Allan Factor functions for argumentative versus affilia-
tive conversation types, with standard error bars. See the online article for
a color version of this figure.
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The log transformation takes into account the scaling law over
T, and the negative simply makes greater values correspond with
greater complexity matching, relative to a baseline control.
For baseline controls, we used surrogate comparisons between

event series. Specifically, condition controls were created by com-
paring event series of two interlocutors from the same conversa-
tion type (either both affiliative or both argumentative) but who
did not converse with each other. Fifty-two condition controls
were created for each dyad in each condition, and the resulting
Da,b values were averaged for each dyad. Mean Da,b functions are
plotted in Figure 6 for original pairings and condition controls,
separated by conversation type.
Da,b values for original pairings in the affiliative conversation

(M ! 11.91, SE ! 1.40) were greater than their condition controls
(M ! 9.80, SE ! .44), t(13) ! "1.95, pone-tailed # .05. However,
there was no such effect in the argumentative conversation,
t(13)! "0.06, pone-tailed ! .48. These results provide evidence for
complexity matching in the power law clustering of acoustic
onsets in affiliative conversations, but not argumentative conver-
sations. A qualitative inspection showed that AF differences gen-
erally occurred across timescales between affiliative originals and
controls. Thus matching did not vary significantly over the range
of timescales in which phonological, lexical, syntactic, and dis-
course processes unfold.
Finally, we note that the effect of conversation type was so

strong that complexity matching for affiliative controls was a little
more than that for argumentative original pairings, albeit not
reliably so, t(13)! 1.59, p ! .134. The reason for this result needs
further investigation, but one possibility is that argumentative
conversations create a repelling dynamic that opposes complexity
matching, thereby making speech signals no more similar than
chance. This possibility is supported by analyses of behavioral
matching reported next.

Behavioral Matching

The previous section reported evidence for complexity match-
ing, but it is important to test whether this evidence can be

attributed to behavioral matching. Interlocutors’ speech signals
may exhibit “align-able” patterns in their periods of acoustic
energy, possibly with some temporal lag between the signals.
Phase-shifted alignment would constitute behavioral matching,
and if the patterns are power law clustered, the same signal
similarity that yields behavioral matching would also yield com-
plexity matching. Here we test for behavioral matching in conver-
sational speech signals and compare with complexity matching
results to determine whether the complexity matching results may
be attributed more simply to behavior matching.
The most directly related measure of behavioral matching would

be to use the same time series of acoustic onsets as used for
complexity matching and simply cross-correlate them. However,
point processes are theoretically instantaneous, which means their
lack of duration complicates direct use of the cross-correlation
function. Rather than assign each onset a temporal range, we used
the duration of ongoing acoustic energy that followed each acous-
tic onset, i.e., the periods of acoustic energy from each onset to
each subsequent offset. The resulting time series of acoustic en-
ergy periods were then cross-correlated to test for evidence of
behavioral matching. Surrogate cross-correlation functions were
also computed using the same method as that for AF functions.
Cross-correlations yielded no evidence of alignment at any lag:

Peak positive correlation coefficients for affiliative pairings (M !
.06, SE ! .006) were not reliably different from their surrogate
controls (M ! .06, SE ! .001), t(13) ! "1.14, p ! .274, and the
same was true for argumentative pairings (M ! .09, SE ! .01)
compared with their surrogate controls (M ! .07, SE ! .002),
t(13) ! "1.67, p ! .119. These null results provide an initial
suggestion that our complexity matching results cannot simply be
attributed to behavioral matching.
Inspection of the cross-correlation functions revealed that, un-

like peak positive correlations, peak negative correlations are far
greater in magnitude for original pairings compared with surrogate
pairings. This effect held for both affiliative and argumentative
conversations, t(13)! 4.77 and 5.92 (respectively), both p # .001.
These negative peaks reflect complementarity in the time series of
acoustic energy periods, which likely derives from turn-taking in
conversational speech. Thus maximal misalignment is also a kind
behavioral matching, albeit one where each speech act is matched
with a lack thereof. While this may be considered as behavioral
mis-matching, it is demonstrative of a strict temporal coordination
between partners that is very much in line with the spirit of
behavioral matching research.
This turn-taking measure of behavioral matching was stronger

for argumentative conversations (M ! –.32, SE ! .16) compared
with affiliative conversations (M ! –.23, SE ! .14), t(13) ! 4.16,
p # .001. Thus the effect of conversation type on behavioral
matching was different and opposite from its effect on complexity
matching: Behavioral matching results point to stricter turn-taking
in argumentative conversations, whereas complexity matching
highlights stronger coupling across levels of linguistic processing
in affiliative conversations.
It is possible that our measure of complexity matching is some-

how the converse of our measure of behavioral matching. If so, the
two measures should be negatively correlated. Results did not bear
out this hypothesis: A correlation of Da,b values with peak mini-
mum cross-correlations yields a coefficient of r(28) ! .23, which
is not reliable (p ! .243). This null result suggests that the

Figure 6. Mean summed Allan Factor difference functions plotted for the
two conversation types, separately for original pairings versus randomized
controls, with standard error bars.
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complexity matching we observed cannot be straightforwardly
attributed to behavioral matching.

General Discussion

Perhaps the most salient coordination we experience in conver-
sations is behavioral matching. We take turns, echo speech acts of
our partners, and strive for mutual understanding by sharing and in
some sense matching our states of knowledge. The saliency of
behavioral matching in firsthand experience has an analog in the
scientific study of interpersonal coordination. Synchronization is a
salient form of coordination dynamics, and one that is relatively
easy to formalize and investigate mathematically (Schmidt, Morr,
Fitzpatrick, Richardson, 2012). Other phase relations—like anti-
phase (Haken, Kelso, & Bunz, 1985; Keller & Repp, 2004)—are
also investigated in this area, but both phase relations can be
conceptualized as different types of behavioral matching.
If we introspect further into the nature of conversational inter-

actions, we find other more indirect forms of coordination in
speech. The “tone” of a conversation, for instance, is not just
carried by particular matches between turns, words, or other speech
acts. Tone can be partly expressed as an approximate statistical conver-
gence in, for instance, pitch, loudness, and pace of speech (Manson,
Bryant, Gervais, & Kline, 2013; Neumann & Strack, 2000; Webb,
1969). Similarly, regional accents and dialects can be considered
as a kind of convergence (Coupland, 1980) in the temporal dy-
namics of speech over multiple timescales and partly stem from
common allophonic variations that are coordinated among popu-
lations of speakers over countless conversations.
In this study, we introduced complexity matching to the inter-

personal interaction literature. Complexity matching was adopted
from West et al. (2008) to measure broad, statistical forms of
coordination in conversational speech. By analyzing data from
naturalistic conversations, we found that complexity matching
provides a new window into interpersonal coordination beyond
behavioral matching. We measured temporal dynamics in speech
as expressed through clustering of acoustic onset events across
timescales. We chose this measure in part because it is a purely
temporal index of speech dynamics—each acoustic onset varies
only in time and nothing else—and in part because it expresses
temporal dynamics across timescales, from phonetic to lexical to
turn-taking variations in speech timing.
Using AF analysis, we found evidence for multiscale dynamics

in the power law clustering of acoustic onsets, as measured by the
AF function, and we found greater clustering at longer timescales
for argumentative conversations, as measured by greater AF ex-
ponent estimates. This effect of conversation type on AF expo-
nents indicates that multiscale clustering reflects more than just
low-level acoustic properties of speech. It also indicates that
argumentative conversations are more structured at the larger
timescales of turn-taking, and this interpretation is supported by
cross-correlation analyses indicating stricter turn-taking in ar-
gumentative conversations.
While argumentative conversations show stricter turn-taking,

only affiliative conversations demonstrated complexity matching,
i.e., convergence in multiscale clustering. We interpret this differ-
ence as reflective of the more subtle forms of coordination in
speech that we mentioned earlier. When people engage in affilia-
tive interactions to converge on some mutual understandings and

opinions, this convergence can be reflected in subtle aspects of
their speech dynamics that operate similar to constructs like tone,
pace, and style. AF analysis of acoustic onsets was able to capture
such subtle aspects of convergence.
The present findings also are consistent with previous multi-

modal analyses of the conversations. As mentioned above, herein
we found no evidence of complexity matching in argumentative
conversations, yet there was more behavioral matching compared
with affiliative conversations, as measured by peak negative cross-
correlations. Consistent with this difference, analyses of move-
ment dynamics also found no behavioral matching during argu-
mentative conversations (Paxton & Dale, 2013). In the future we
plan to work on complexity matching analyses that may be applied
to both movement and speech dynamics, in order to investigate
whether multimodal coordination may further illuminate the cou-
pling of interlocutors during affiliative conversations, and lack
thereof during argumentative conversations.

Complexity Matching and Theories of Conversation,
Coordination, and Development

As discussed in the Introduction, our interpretation of complex-
ity matching is consistent with a multilevel view of influence in
interpersonal interaction, like that found in the interactive align-
ment model (Pickering & Garrod, 2004). Language systems and
processes are inherently multilevel, i.e., multiscale, and the inter-
active alignment model posits coupling across levels. The concept
of complexity matching is exactly this—a kind of coupling across
the scales of two interactive systems. The concept comes from
work in statistical mechanics (West et al., 2008) that connects to
the idea of interactive alignment. Multiscale systems with interac-
tive levels of processing generally are expected to exhibit power
laws as signatures of the complexity that is concomitant in such
cross-scale interactions. West and colleagues report formal analy-
ses to show that two multiscale, complex systems are most respon-
sive to each other when their power laws converge, particularly
near a specific exponent in the power law distribution of interevent
intervals.
We find it somewhat remarkable that data from dyadic conver-

sations fit the theoretical predictions of a theory from statistical
mechanics that was formulated for a broad class of physical
systems. In the current study, we found the estimated exponents of
interevent intervals during conversations indeed were near the
predicted exponent value of two. Thus our study is an example of
how work from statistical mechanics can inform and enhance
specific theories (such as interactive alignment) in the psycholog-
ical and cognitive sciences, and how interdisciplinary research can
yield new disciplinary insights.
To illustrate this point further, formal analyses of complexity

matching yield another theoretical prediction that has been pursued
in other behavioral studies. As noted earlier, complexity matching
is predicted to correspond with increased information exchange
between two complex systems. The experiment analyzed herein
did not include a direct measure of information exchange, but
Fusaroli, Abney, Bahrami, Kello, and Tylén (2013) reexamined
data from a joint perceptual decision-making task (Bahrami et al.,
2010) in which dyads collaborated on visual discrimination judg-
ments. Speech signals were analyzed using similar methods to
those herein, and measures of complexity matching were found to
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correlate with increased performance derived from joint decision
making. These results suggest that greater increased complexity
matching can correspond with enhanced joint decision making,
and by extension with enhanced mutual comprehension as well
(Brennan & Clark, 1996; Brennan & Hanna, 2009).
Thus far, we have discussed complexity matching primarily in

the context of the interactive alignment model, but it is also related
to theories of interpersonal synergy (Fusaroli, Rączaszek-
Leonardi, & Tylén, 2014; Ramenzoni, Riley, Shockley, & Baker,
2012; Riley, Richardson, Shockley, & Ramenzoni, 2011) that have
grown from synergies as theorized in motor systems (Bernstein,
1967; Turvey, 1990, 2007). Synergy is the emergence of coordi-
nation via reduction in the degrees of freedom in a system of many
interacting components. This concept can be extended from phys-
ical systems into the interpersonal interaction domain. By exten-
sion, Fusaroli et al. (2014) proposed that interpersonal synergies
should (a) be highly sensitive to conversational context, (b) adapt
flexibly to changing needs of the task, and (c) self-assemble to
minimize variance to manage the degrees of freedom within the
interaction (Riley et al., 2011). These entailments of synergies may
lead to specific, testable hypotheses about functional specificity
and reciprocal compensation in interpersonal coordination that
could be meaningfully explored with complexity matching.
Complexity matching may also shed light on mechanisms pro-

posed to explain behavioral matching. In particular, some re-
searchers hypothesize that behavioral matching arises from shared
internal representations (Sebanz et al., 2006), while others hypoth-
esize coordinative structures and dynamics (Richardson et al.,
2007). Complexity matching cannot be readily explained in terms
of sharing representations or mimic dynamics. Complexity match-
ing pushes these hypotheses to become more multiscale in how
dyadic interactions affect representations and dynamics.
Beyond these insights into moment-to-moment interaction, we

believe that complexity matching could provide significant advances
in our understanding of communication and social interaction more
broadly. For example, developmental researchers hypothesize that rhyth-
mic coordination between infant and caregiver—akin to behavioral
matching—supports infant language learning (Feldman, 2007;
Jaffe et al., 2001). But like speech in adult conversations, there is
evidence that infant vocalizations also are organized into hierar-
chical clusters during typical development (Lynch, Oller, Steffens,
& Buder, 1995; Oller, 2000). Recent results using AF analyses
revealed complexity matching between infant prelinguistic vocal-
izations and caregiver speech (Abney, Warlaumont, Oller, Wallot,
& Kello, 2014). Taken together, these studies suggest that com-
plexity matching may be foundational to the learning and devel-
opment of interpersonal coordination and communication, unveil-
ing insights not captured by other methodological lenses. We
imagine that similar important discoveries in other domains of
human interaction and communication may be uncovered when
explored in this new light.

Conclusion

Interaction research has relied on measures of behavioral match-
ing as a measure of interpersonal coordination for decades. Com-
plexity matching is a new, complementary measure of coordina-
tion. Behavioral and complexity matching provided unique
insights into the different interactions that occur during affiliative

versus argumentative conversations—arguments were character-
ized by stricter turn-taking, whereas friendly conversations yielded
distributional similarities that may reflect the establishment of
common ground. Together, these analyses provide a richer view of
interaction than either alone. These complementary analyses may
be generalized and applied to yield similar insights in other areas
of language and interaction research, wherever hierarchical nesting
may yield power law scaling in the temporal dynamics of behavior.
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