Welcome to the Cognition and Media (CogMedia) project, where you'll find aggregation and analysis of newsfeeds from major media headlines. Our research goal is to link cognition in news consumers to large-scale trends in media. Hosted by the Communicative Mind Laboratory in the Department of Communication at UCLA. CogMedia includes a large open database, and you can get lots of data for free through our code initiative, allowing you to import straight into R.
Our research approach can be called "cognitive analytics." Think of how consumers read the news. It's literally mental. We are testing the hypothesis that subtle but measurable cognitive factors are useful in understanding what consumers read and share. These cognitive factors include subtle aspects such as accessibility, comprehensibility, and even bias. Subtle aspects of human mental processing could help us to understand media data, from the level of individual consumers, to more collective levels, such as the distribution of news themes, perhaps even the behavior of major newsmedia.
We are developing cognitive metrics based on newsmedia headlines, such as how simplified or complex a news story's language is, or how recognizable a recent story might be to a reader. The CogMedia project aims to bridge these cognitive metrics to broader collective patterns seen in newsmedia stories. What predicts a story's becoming viral? What explains the thematic patterns in news stories? How do cognitive variables relate to partisanship and controversy, in the manner that stories are composed and disseminated?
The Co-Mind Laboratory uses the CogMedia database to conduct specific research projects, linking cognitive processes to newsmedia consumption and social media metrics. We will share active research projects here through working papers.
Dale, R. (2020, August 6). The CogMedia project: Open data and tools for linking cognitive science and mass media. OSF Preprints. doi: 10.31219/osf.io/z69ta.
Luna, J. M., Alegria, O., & Dale, R. (2020, July 31). Cognitive fluency and the spread of news on social media. Poster presented at the 42nd Annual Meeting of the Cognitive Science Society.
CogMedia's core dataset is available in its entirety. A release of this dataset is conducted a few times a year. Click here for the current version. To get you started processing these data, the documentation for the function library is on GitHub here:
https://github.com/racdale/cogmedia
With the function library, you can quickly process CogMedia batches inside R. The result is a data frame over which you can apply your favorite tools (tidyverse, etc.). Illustrations are on the GitHub repository above.
Each story is based only on the RSS feed of the news item. We obey all copyright rules of the news source. However we tag news stories with a variety of information from social media metrics. Each story record includes:
source
News organization (e.g., New York Times).title
Title of the story.description
Text associated with story description in RSS.alexa_rank
An Alexa rank of the source.partisanship
A partisanship score, based on AllSides.com.social_score
An approximate rate of Twitter sharing shortly after story release.url
Full URL to the story's source.Our database contains...
1,474,063
news stories, since mid 2019.
Past week of stories, by source...