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Abstract

Recent advances in computational modeling have expanded
our capacity to analyze language and communication, par-
ticularly through transformer models. The present work in-
vestigates how such computational frameworks can be lever-
aged to address clinical domains in communication disor-
ders. We used semantic embeddings from BERT’s layers
to analyze language-related adjustments used by participants
with traumatic brain injury (TBI) in conversational transcripts.
By examining semantic convergence patterns across different
layers of the BERT model, we found that TBI participants
demonstrated more pronounced “self” convergence —- they
tended to stay closer to their own semantic contributions in
the conversation —- compared to controls. This effect was
particularly noticeable at earlier layers of the BERT model,
suggesting that surface-level semantics play a significant role.
The findings highlight the potential for language models to
enhance our understanding of social interaction dynamics. We
further discuss how bridging computational linguistics with
clinical domains can address analytic challenges in the study
of natural cognition and communication.
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Introduction

In this paper, we use variation across layers of a deep neural
network (DNN) to investigate how language and communi-
cation may be disrupted. Specifically, we analyze transcripts
of natural interaction among participants who have experi-
enced traumatic brain injury (TBI). Below we provide some
background on the clinical context of TBI to justify our fo-
cus: There is considerable debate regarding how language
and communication are disrupted in TBI, and the layers of
a DNN provide a feature space in which to ‘map out” how
someone with TBI uses language in a way that may diverge
from controls. Our goal is a proof-of-concept study showing
that DNNs are a means to map out the disruption to commu-
nication in clinical contexts and so can reveal the potential
locus of cognitive or linguistic organization that is impacted.

Background

The ability to converse with others is critical to social life:
among friends and family, in education, in the workplace
and much more (Turkle, 2015). If the ability to converse
is disrupted, it can have deleterious effects on quality of
life. Adults with social communication disorders can be pro-
foundly impacted (ASHA, 2023). An important goal of the

cognitive science of language and communication is to under-
stand what underlies our ability to converse and how this abil-
ity can be disrupted. Studying the factors that are affected by
injury or some other disruption has wide implications, both
in understanding the cognitive basis of language and commu-
nication, but also in relevant clinical domains: It could con-
tribute ideas for the development of novel assessments and
treatment (Steel & Togher, 2019).

The complexity of language and communication itself can
make it difficult to ascertain the underlying impacts of any
disruption (Perkins, 2005; Steel & Togher, 2019; Turkstra,
Brehm, & Montgomery, 2006; Turkstra & Politis, 2017).
In particular, conversation typically involves many behav-
iors simultaneously. These can include eye movements
and body movements, gesture and facial expressions and
more (Alviar, Kello, & Dale, 2023; Cassell et al., 1994,
Stivers, 2021; Streeck & Jordan, 2009; Hidaka & Yu, 2010;
Fusaroli, Bjgrndahl, Roepstorff, & Tylén, 2016; Mondada,
2016, 2019). Even in the verbal domain there is considerable
need for finely-tuned coordination. Verbal behavior in con-
versation involves the selection of words, formulating coher-
ent descriptions that are topically relevant, all while tracking
the flow of the interaction (Riordan, Kreuz, & Olney, 2014).
A disruption to underlying cognitive processes could impact
this coordination significantly.

This paper focuses on one domain of such disruption: trau-
matic brain injury (TBI). TBI is typically defined as an ac-
quired condition elicited by head injury (CDC, 2023; Sarno,
Buonaguro, & Levita, 1986; Turkstra & Politis, 2017). It can
present with varying degrees of severity (Sarno et al., 1986).
Closed-head injury, such as from a fall or sports injury, can
cause diffuse brain damage that disrupts circuitry important
for complex conversational coordination and language pro-
cessing. Its impacts have traditionally been studied using
standardized language tests (Steel & Togher, 2019). TBI has
also been found to impact social communication (Turkstra &
Politis, 2017). The subtlety and complexity of TBI and as-
sociated language impacts is the subject of continuing inves-
tigation. Among the many findings in this area, some have
found that TBI may cause disruption to turn-taking, to quan-
tity of information sharing, and to informational entrainment
with a conversation partner and more (Coelho, Youse, & Le,
2002; Gordon, Rigon, & Duff, 2015; Turkstra et al., 2006).

The goal of the present paper is to use a well-known cor-



*INV: so + you_know I read an article the other day in [/] &-uh in the
paper that at time where &-uh hospitals are closing services Milford

keeps adding stuff and expanding a_lot_of xxx .

*PAR: that’s correct . 276781_277397

258594_276781

Figure 1: Transcript sample of conversation partners, investigator and participant, from Coelho et al. (1991, 2002) in TBIBank.

pus of TBI to examine how this conversational coordination
is impacted across multiple aspects of language. As noted
above, this requires an examination of the many aspects of
behavior that underlie language and communication. We
look to a statistical NLP pipeline intrinsic to language DNNs.
These models may be best known for their generative capac-
ities, as they have captivated the public’s attention with tools
such as GPT and others (Dale, 2021; Rogers, Kovaleva, &
Rumshisky, 2020). However any such model has underneath
it an array of numeric data representing different aspects of
language. In this paper, we utilize BERT, among the first
and best-known DNNs for language. BERT is composed of
a dozen layers of artificial neural ensembles, known as trans-
formers (Vaswani et al., 2017). These layers of transformers
act like an NLP pipeline, and each layer may “pay attention”
to different aspects of language, such as specific words, parts
of speech, syntax and so on (de Vries, van Cranenburgh, &
Nissim, 2020; Rogers et al., 2020).

DNNs like BERT could be considered integrated measure-
ment devices for examining conversational coordination of
many aspects of the verbal level. Our aim here is to examine
how someone with TBI uses language in a natural communi-
cation context. A DNN like BERT could assay how language
use with TBI differs from comparison control participants.
This approach may link in intriguing ways to psycholinguis-
tic theory too, fostering greater rapprochement between the
study of language processing and its disruption. For example,
we may find that executive control disruption in TBI aligns
with the capacity for other-oriented perspective-taking related
to work on language use and comprehension (e.g., Brown-
Schmidt, 2009).

In the next section, we summarize the NLP pipeline of
BERT, and summarize our analysis approach using it. The
prior work on TBI motivates some predictions for our analy-
sis. We then share our results and conclude with theoretical
implications.

The NLP Pipeline in BERT

The bidirectional encoder representations from transformers
(BERT) learns the context that a word occurs in by predict-
ing it from its backward and forward context. After train-
ing on lots of data, such as the entirety of Wikipedia, words
can be represented as numeric embeddings in BERT’s neu-
ral layers. These embeddings can be used to compare words
and sentences in order to judge semantic similarity and more.
BERT quickly became a standard model by 2020 as it ex-
ceeded performance of many models on several benchmarks
(Rogers et al., 2020). Despite recent advances in these bench-

marks, BERT’s layers are a familiar basis on which to conduct
our proof-of-concept analysis.

What do BERT’s many layers do? There is a long history
of studying embedding vectors in statistical models as a way
to define and measure word meaning, including in prior mod-
els that can capture multiple linguistic features (Johns, Jones,
& Mewhort, 2019; Jones & Mewhort, 2007; Landauer & Du-
mais, 1997; Mikolov, Sutskever, Chen, Corrado, & Dean,
2013). As a deep neural network, BERT’s capacities in this
regard are substantial, encoding not just “word” meaning but
many other aspects of the text. BERT approximately “recapit-
ulates” a natural language processing (NLP) pipeline across
its 12 layers of transformers. For example, de Vries et al.
(2020) showed that BERT, when presented with sequences of
words, has layers that successively handle distinct aspects of
language, like parts of speech, entity identification, and coref-
erence.

Despite BERT’s performance, it has been superseded by
more recent transformer DNN models. Nevertheless, it re-
mains widely used for various reasons. First, its embeddings
have been widely studied and so are somewhat better under-
stood. Second, it is a smaller and so more tractable model,
easy to download directly from well-known machine-learning
services to be used locally on a single PC. Third, there has
been success using BERT in the past to analyze samples of
conversation in a manner similar to what is presented here.
For example, by adapting BERT’s internal neural layers as
a measurement scheme, Rosen and Dale (2023) show that
semantic similarity can be detected even in relatively small
datasets. We adapt this method for the present analysis.

Convergence-Entropy Analysis

The method described in Rosen (2023) works as follows.
First, we convert the entirety of an utterance to word embed-
dings using a transformer-based DNN model. We then calcu-
late a probability of how likely it is that the word embedding
for each token in one sentence could be recovered as a func-
tion of the context in a second sentence. This is accomplished
by taking the lowest cosine error (CoE) for the comparison of
the token from the first sentence and any other token in the
other sentence.> For pairs of compared sentences, CoE is
then converted to a probability by calculating its likelihood
using a half-Gaussian distribution with a location parameter
p =0, and a pre-selected scale parameter 6. This process is

Uhttps://pypi.org/project/convergence-entropy-metric

2Note that this analysis is asymmetric. One way of understand-
ing this is that sentences may have different numbers of tokens, mak-
ing the shorter sentences easier to “recover” from longer sentences.



semantic convergence
(lower residH = residual entropy)

residH = -0.076

residH = -0.013

-10 K +10

Figure 2: We measured ‘residual entropy’ (‘residH’) which is an entropy (or disorder) score that relates utterances — the lower
the entropy the more predictable or convergent the comparison. Past work suggests convergence should be strongest near k = 0
(proximity of turn time) and example sentences and values shown here.

described in the following equation:

P(Eu|Ey) = Py, (mjax (CoE(Exi, Eyj)) ‘,u = o,c> 1)

This method then calculates the total entropy — the total de-
gree to which the semantic content, word-by-word, differs be-
tween two sentences — with the following:

H(x;y) = — ZP(Exi|Ey) log P(Ey|Ey) (2)

When there is evidence of high convergence between two sen-
tences, the “convergence entropy” value returned by Eq. 2 is
low. When there is high divergence between two sentences,
this value is high.

In this paper, we analyze convergence across many of
BERT’s layers using a corpus of TBI conversation. This cor-
pus from Coelho et al. (2002) contains conversations with
controls and with patients with TBI. In the next section, we
summarize the corpus and the analysis approach, offering
more technical detail about this convergence method under
BERT’s layers.

Methods

We used the Coelho Corpus in the TBIBank section of
TalkBank (Coelho, Liles, & Duffy, 1991; Coelho, 1995;
MacWhinney, 2007). This corpus contains interactions be-
tween patients with TBI and an investigator, including a con-
versational prompt for an informal conversation. The corpus
also includes a matched sample of control participants. This
informal conversation was extracted from the source tran-
scripts. We analyzed 48 control conversational transcripts and
49 that include patients with TBI. These conversations often
involved discussing why participants were at the clinic, their
personal lives and work, and so on.3

3https://tbi.talkbank.org/access/English/Coelho.html. NB: Some
conversational preambles were removed from raw transcripts prior
to analysis to ensure that data only included the main conversational
prompting.

In Fig. 1 we illustrate the structure of a transcript, with a
marker for the identity of a speaker for a given turn, and then
the sequence of words used in that turn. *INV is the inves-
tigator, and *PAR the participant. The numbers at the end
of the lines are timestamps. For each such turn, we tracked
the identity of the speaker, the line number of the conversa-
tion, the particular word sequences used, and removed the
timestamps and other fillers using the PyTorch tokenizer. We
removed markers for unintelligible (“xxx”) and other annota-
tions. We only kept turns that were 6 or more tokens to avoid
extreme values in the convergence-entropy estimate.* Con-
versations were about 10 minutes each and the filtered tran-
scripts had between 28 and 175 turns remaining for analysis
(mean approx. 100).

We extracted contextual embedding vectors for these tran-
scripts at the world level using BERT.> These numeric layers
are used as a basis for measuring the convergence between
two turns in a conversation. These turns can be analyzed
across various points in time. For example, we can take time
point ¢ and compare it to the immediate turn at t + 1. We
can also compare that turn to any range within ¢ £ k. For this
analysis we chose k = 10 as this turn distance would seem
to yield diminished convergence. Convergence is therefore a
measure of how similar the conversational contributions are
across different points in time.

Convergence allows us to assess the extent to which partic-
ipants are aligning semantically with their conversation part-
ner. By comparing this over time, as described in Turkstra
et al. (2006), we can also assess the dynamic shape of this
convergence. How quickly does it dissipate across t 4+ k com-
parisons? We can also compare controls to participants with
TBI, and determine if those with TBI diverge or converge in

4We acknowledge this may limit access to some structure of con-
versation, which is often managed in short turns. We make this
choice in our initial analysis to stabilize average entropy measure-
ments across turn comparisons, and recognize the need to improve
this in future work.

SWe used bert-base-cased from HuggingFace. Because this
model was trained with unpublished books and Wikipedia, it is un-
likely that the Coelho Corpus was in its training input.



different ways from their conversation partner. By analyzing
this convergence across different layers of BERT, we can ex-
amine which linguistic properties, such as relative semantic
depth, may best characterize divergence from control.

Results

After filtering, the dataset of k£ 10 comparisons yields
748,824 pairwise semantic comparisons for control partici-
pants and 742,531 for TBI participants across all 12 BERT
layers. We also visually assessed the distribution of residual
entropy H after controlling for Levenshtein (surface string)
distance and distributions across all BERT layers are approx-
imately normal.®

We first tested whether participants in the TBI conditions
exhibit any aggregate difference from controls across the en-
tire dataset. We ran a series of multilevel models with 1mer
in R in the following way: a base model that specifies only
conversational distance k and a random intercept, a TBI-
condition model that includes an interaction term between k
and condition (TBI vs. controls), a ‘self vs. other’ model that
factors in whether the convergence is within or across conver-
sation partners, and then a TBI * self * BERT layer model
that includes layer depth (1-12). To index ‘self,” we added a
dichotomous variable called ‘self’ set to 1 when two turns are
compared from the participant themselves, and O if the turns
are compared across both conversation partners. Importantly,
BERT layer numbers were included as factors not continuous
variables.

The models were defined in the following way, with a sim-
ple intercept random effect structure for individual partici-
pants that yielded convergence:

Models, par count, and AIC

base: residH ~k 4  —2628043
TBI: residH ~ TBIxk 6 —2628041
TBI + self :  residH ~ TBI xk x self 10 —2631419
full model : residH ~ TBIxkxselfxL 98 —3907251

Here, ‘residH’ is a dependent variable that reflects average
entropy rate with surface string similarity between the turns
residualized out (Levenshtein distance). To test the contri-
butions of condition, distance, layers and their interactions,
we compared the models with anova and assessed AIC and
statistical significance. We compared each model to its more
complex variant. The model with full complexity, contain-
ing a factor representing which BERT layer the convergence
was measured with, results in the lowest AIC. This full model
yields a very large array of significant coefficients. We sum-
marize a few observations from the model. First, the domi-
nant main effects are the factors from the BERT model itself
(all p’s < .00001 for layers 2-12 relative to input layer). Nu-
merous interaction effects were observed in this model, espe-
cially between layers and the ‘self” and “TBI’ variables (most

For materials, see: https://github.com/racdale/tbi-dnn
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Figure 3: L is a BERT layer model comparing the base (k
only) to the full model with k, ‘self” and ‘TBI” predictors. The
change to model fit is assessed by correlating predicted and
observed semantic convergence scores and comparing their
squared values between base and full models.

two-way interactions between layer and these two variables
significant p’s < .001). This suggests, as we predicted, that
TBI may represent a particular disruption measurable from
the structure in embeddings. We resolve these interactions
further below and show that participants in the TBI condi-
tions are showing more pronounced ‘self’ convergence (they
tend to stay close to the semantics contributed on their own to
the conversations relative to controls).

Importantly though, TBI does not on its own contribute to
the linear model. As shown above, the AIC does not drop
when adding TBI to the model that includes the pairwise turn-
distance variable k. Indeed, we can get a sense of overall fit
by correlating predicted convergence entropy with observed
entropy for each model and calculating 7. Distance of com-
parison k and TBI only account for less than 1% of the ob-
served variance, and so adding TBI to the linear model ac-
counts for only a fraction of a percent. Adding BERT’s layers
to the model yields a much higher fit, over 50% of variance
accounted for (2 = 0.58). Of course, this model is much
more complex, but its relative AIC is considerably lower than
all simpler models. BERT’s layers and their interaction with
other key variables account for much more of the variance
observed in convergence-entropy, suggesting that the embed-
dings at various layers deviate from one another in how they
underlie pairwise semantic comparisons.

Analysis by BERT Layers

To investigate how BERT’s layers are contributing to this ag-
gregate model, we ran separate multilevel models over each
layer. We simply reduced our overall data to smaller subsets
of data that included only semantic convergence measure at
each layer and across all 12 layers. The results are shown in
Fig. 3.

All layers show significant departure from the base model
though across a range of effect sizes. The biggest effect is
observed in earlier than later layers, suggesting that surface
semantics may be key to understanding these effects. This
seems to be a consistent result across the BERT layers, where
the strongest contribution of TBI and ‘self’ comes from the
earliest embeddings.



Further visualization of our convergence results suggests
that ‘self’ is an important variable for understanding patterns
of significance. When we examine these effects across k in
plots shown in Fig. 4, we find that TBI participants show more
convergence with themselves especially at earlier layers. In
other words, they tend to stay ‘closer to their semantic space’
than controls. This may explain the significant contribution of
the ‘self’ variable including its widespread interactions with
layer. We revisit this in discussion below.

Individual Differences

Consistent with results shown in the prior section, the effects
of TBI are very small. Weak aggregate effects may be a sign
of underlying variation or complexity at the individual level.
For example, Gordon and colleagues showed that while TBI
participants diverge in conversational word count, the effects
are weaker relative to the wide individual dispersion across
participants (Gordon et al., 2015). We suspected this may
explain the weak effects here, and results may include wide
individual differences across TBI participants.

To examine this, we ran similar multilevel models but in-
cluded the full set of control participants and each TBI par-
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Controls .

Residualized entropy
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Figure 4: We show entropy convergence (semantic closeness)
scores across two sets of earlier and later layers separated by
‘self’ turn pairs and other. Earlier BERT layers reveal more
‘self converence’ in TBI than later layers.

ticipant individually. Such a model’s coefficients would mea-
sure potential departure of the individual TBI participant from
the mass distribution of the controls. After running all of
these models across all participants, we indeed find quite a
large range of variation across participants, shown in Fig. 5.
Consistent with Gordon et al. (2015), TBI participants show
dispersion across the range of possibilities in that they reveal
both convergence and divergence across BERT layers. We
expand upon this observation in our discussion below.

General Discussion

Overall, our analysis suggests that embeddings do vary in
informative and potentially interesting ways across TBI and
controls. However the results are complex and numerous sub-
tle observations frame the foregoing analysis. For example,
perhaps curiously, we found that TBI participants converged
more with their own contributions to conversation than their
partner’s. While significant on average, underlying this ef-
fect is a wide spread of individual variation, including many
TBI participants who appear to show divergence relative to
the partner.

There may be a potential distinction here directly relevant
to individual differences in clinical contexts. Participants who
suffer from the cognitive effects of closed-head injury may
have to compensate in context for a fast-changing interac-
tion. There are at least two approaches to this problem. For
one, some TBI participants may prefer to converge with their
own memory of the conversation, consistent with findings
on a general egocentric tendency in social cognition (Epley,
Keysar, Van Boven, & Gilovich, 2004). In this case, they
may focus on and follow the dominant signal of their own
language use. However the opposite may be true for another
compensation strategy: TBI participants may compensate for
the disruption to their communicative skills by anchoring to
their conversation partner. If they struggle with executive
control, as suggested in past clinical surveys (Turkstra, Nor-
man, Mutlu, & Duff, 2018), it may help to be guided by and
track their interaction partner to the extent they can. This may
yield a bimodal distribution, perhaps similar to that observed
in the entrainment effects of Gordon et al. (2015).

While this individual level analysis is more speculative, we
can suggest that the semantic convergence with BERT yields
a wide range of individual patterns across TBI participants,
consistent with past work. These wide individual differences
could reflect distinctive compensation in response to their in-
jury. Future investigation may couple the transformer-based
data mining with targeted content analysis to assess this.

A number of important limitations should be noted. First,
we used BERT and there are numerous advances in this se-
mantic modeling since its publication. More recent models
may help to fine-tune semantic results, including different
training regimes such as next-token prediction and relevant
embeddings under those frameworks. Extensions of this work
should not rely on a single model but test several architec-
tures.
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TBI participant (approximately ranked by coefficients)

Figure 5: We ran a regession model estimating a coefficient of a TBI participant’s status compared to the mass distribution of
all controls. These models restricted data to ‘self” comparisons nearby with |k| < 4. This assesses the local ‘self” effect we see
in Fig. 4. There is a large tendency for TBI participants to show lower entropy convergence to themselves (dark) but many who
show the opposite result (light). The size of the markers is a linear function of the coefficient estimate for plotting.

Another limitation is that we examined a particular sen-
tence length (n > 5) and time lag (k + 10) and future work
could investigate how these effects are influenced by such
parameters. It may also be helpful to apply hierarchical
Bayesian modeling to assist with convergence issues for our
inferential models. These would help to improve nested
individual-level structures, especially to help gain further in-
sight into individual differences. Finally, as noted, content
analysis and more investigation into the layer embeddings
would help to understand a finer-grained linguistic locus for
these effects — for example, TBIBank encodes a morphosyn-
tactic tier that may be integrated into our analysis to assess
structural alignments too.

The approach we frame here, and the potential for future
results that examine TBI and other contexts of communica-
tion disorders, may represent a fruitful bridging. This bridg-
ing is one that could be fostered more, especially in the tools
for dynamic analysis and computational linguistics offered by
cognitive science. Turkstra et al. (2006) argue for something
like this in a discussion of TBI — that more natural communi-
cation contexts, especially dynamic and temporally extended
ones, may be examined with recent analytic advances. These
techniques can robustly integrate large amounts of transcript
data while preserving conversational flow. Future such anal-
ysis may expand our understanding of language, communica-
tion, and their cognitive underpinnings — and how they can be
disrupted.
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