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Abstract

With the rise of Large Language Models (LLMs), interest in
simulating interaction dynamics has grown, raising questions
about their validity as cognitive models of human discourse.
While extensive research focuses on their performance in vari-
ous applications, we aim to quantify LLM conversational pro-
cesses akin to traditional human studies. By analyzing how
convergence entropy evolves across different conversational
tasks, we propose a framework1 for quantitatively assessing
LLMs’ ability to exhibit specific features. This approach of-
fers a pathway to characterizing LLMs for agent-based model-
ing and broader discourse analysis.
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Interpersonal Convergence
Conversation is an inherently dynamic activity. To progress
a conversation, individuals adapt their verbal and nonverbal
behaviors in response to their partner’s actions and charac-
teristics, often towards shared goals and similar behavioral
patterns (Toma, 2014). Similarity at the conceptual level, for
example, may increase cohesion and a shared focus (Brennan
& Clark, 1996). Disruption to this capacity of adapting to a
conversation partner can have sharp effects on speech, devel-
opment, and other functions (Condon & Ogston, 1971; Righi
et al., 2018; Steel & Togher, 2019). This notion of conceptual
alignment has been studied in a variety of interactive con-
texts. Alignment can vary by conversational or task goals,
and there is an ongoing debate about what such alignment
may imply about the underlying cognitive processes involved
in conversation (Fusaroli et al., 2012; Fusaroli & Tylén, 2016;
Brennan, Galati, & Kuhlen, 2010; Dale, Fusaroli, Duran,
& Richardson, 2013). Whether referred to as synchrony,
mimicry, accommodation, or convergence, numerous theo-
retical frameworks attempt to identify the underlying factors
or indicators driving these behaviors. For example, Com-
munication Accommodation Theory (CAT) (Giles, Ogay, et
al., 2007) suggests that a communicator’s personal and group
identity significantly influences their conversational behav-
iors alongside the content of the interaction.

Recently there has been growing interest in computation-
ally modeling conversation to facilitate systematic investiga-
tion of its cognitive basis (Donnarumma, Dindo, Iodice, &
Pezzulo, 2017; Miao, Dale, & Galati, 2023; Chang & Bergen,

1https://github.com/ryanchaiyakul/socratic models

2024; Dale, 2016). Surprisingly, pure simulations of inter-
action dynamics remain rare in computational cognitive sci-
ence (Dale et al., 2013) and have only recently gained traction
with the advent of large language models (LLMs) (Chang &
Bergen, 2024). While LLM-based simulations make these
studies more accessible than ever, key questions persist re-
garding the extent to which such computational systems can
serve as cognitive models for understanding the human be-
haviors on which they are trained (Bender, Gebru, McMillan-
Major, & Shmitchell, 2021; Ivanova, 2025).

Much existing research has focused on evaluating LLMs in
terms of general conversational performance, such as through
the Turing test (Jones & Bergen, 2023) or the effectiveness of
social media responses (Rosen & Dale, 2024). However, little
effort has been made to quantify conversational processes in
a manner comparable to human studies (Richardson, Dale, &
Marsh, 2014). This work aims to bridge that gap by assess-
ing whether LLM-generated conversations exhibit measur-
able conversational dynamics and by qualitatively comparing
these patterns to those observed in human interactions. This
approach also aligns with recent trends emphasizing align-
ment as a key factor in conversational performance (Ostrand
& Berger, 2024).

In this study, we analyze conceptual dynamics between two
LLMs in different conversational tasks including (1) finding
consensus, (2) giving explanation, and (3) engaging in con-
flict. We examined the conceptual similarity between these
networks and test whether, as observed in prior studies of
human conversations, the nature of the assigned task shapes
the semantic structure of their interaction itself. For exam-
ple, prior work suggests that conflict should introduce dis-
ruption to the alignment between opposing speakers (Paxton
& Dale, 2013). In short, we hypothesize that models capa-
ble of understanding conversational tasks should exhibit mea-
surably distinct alignment structures depending on the task,
with the greatest divergence occurring between debate and
the more collaborative tasks of consensus-building and expla-
nation. Before turning to our simulations, we first introduce
the technique we use to measure conceptual similarity.

Entropy-Convergence Metric
To measure conceptual alignment, we used an existing metric
convergence-entropy. This metric is based on repeated com-
parisons of lexical elements in a transcript of conversation,
such as word vectors, and uses these vectors as a measure of



semantic similarity inspired by Shannon (1948). This metric
can be thought of as a variation of the famous Shannon exper-
iment, where for each token i in some text x an observer asks
if they could find a separate token j in a different text y that
has the same meaning as the token i. To do this, all tokens
in text x and y are converted to word vectors using a con-
textually aware word-embedding model like BERT (Devlin,
Chang, Lee, & Toutanova, 2019; Liu et al., 2019b) or one of
many GPT variants (Brown et al., 2020; Radford et al., 2019;
Scao et al., 2023).

To perform a comparison, each token i in word vector x
is matched with a token j in y with the most similar mean-
ing based on distance using cosine error (CoE). In Rosen
and Dale (2023), raw distance measurements are converted to
a probability using a half-Gaussian distribution with a mean
µ= 0 (indicating that two word vectors mean exactly the same
thing when the cosine error is equal to zero), and some arbi-
trary scale σ as demonstrated in equation 1. Following Rosen
and Dale (2023), we set the scale parameter σ = .3.

P(Exi|Ey) = PN[0,∞]

(
min

j
(CoE(Exi,Ey j))

∣∣∣∣µ = 0,σ
)

(1)

Exi is the ith word vector out of the set of word vectors for
the utterance x (Ex), Ey is the set of all j word vectors for
the utterance y, and CoE is a function that yields cosine er-
ror values for every token j compared to the token i. Once
distance measurements have been converted to probabilities,
the total amount of information in terms of the entropy be-
tween the texts x and y can then be calculated consistent with
Shannon’s original formula (see equation 2).

H(x;y) =−∑
i

P(Exi|Ey) logP(Exi|Ey) (2)

In the simulation below, we compare turns of conversation be-
tween LLMs and measure the extent to which their semantic
structure yields conceptual similarity as measured by H(x;y).

Simulation
Agents

A linguistic agent can be decomposed into two components:
a model and an accompanying translation layer. The mod-
els GPT-4o mini2, developed by OpenAI, and Gemini 1.5
Flash3, developed by Google, were chosen for their compara-
ble performance and overlapping target applications. To form
a transcript, the moderator and speakers are mapped to roles
commonly used in LLM application programming interfaces.
Specifically, the turns from the immediate speaker are labeled
“Assistant” while turns from the moderator and remaining
speaker are labeled “System” and “User,” respectively.

2https://openai.com/index/hello-gpt-4o/
3https://tinyurl.com/2kswcxay

Prompts
Each model was evaluated using a collection of 90 prompts,
consisting of the Cartesian product of 30 unique topics (Table
1) and 3 conversational tasks.

Topics Since the statistical effects of conversational tasks
on LLMs are unknown, we followed traditional heuristics for
cell size and selected 30 topics to ensure sufficient statisti-
cal power. This heuristic is often attributed to works such
as Cohen (1962). Our reasoning for this sample size was
that because these conversations are simulations, the varia-
tion would likely be relatively low compared to the human
case (Rosen & Dale, 2024) and this would be sufficient power
to detect effects of alignment and task. To incentivize gen-
eration of human-like conversations, these topics were drawn
from five overarching categories prevalent in everyday human
discourse such as sports, sciences, and literature. By select-
ing a diverse range of topics, potential confounding effects
originating from specific topics were minimized.

Table 1: Topic table.

Category Topics
Sports Golf, Basketball, Badminton, Football,

Cricket
Sciences Philosophy, Computer Science, Political

Science, Sociology, Astrology
Literature Moby Dick, Crime and Punishment, The

Hobbit, Don Quixote, War of Worlds, 1984
Cuisine English, Peruvian, Australian, Croatian,

Mongolian, Russian
Politics Democracy, Feudalism, Authoritarianism,

Theocracy, Monarchy, Anarchy

Tasks For each topic, the agents performed three tasks: de-
bate, explain, or determine whether the overarching category
is appropriate. These tasks were chosen because previous
studies suggest that debate, teaching, and consensus exhibit
distinct patterns of convergence. Predictions for alignment
can derive from past work on human interaction. Consen-
sus likely induces the highest conceptual alignment, shown
in a wide variety of work on collaboration and joint action
(Brennan & Clark, 1996; Brennan et al., 2010). Debate has
been associated with disruptions to alignment in nonverbal
signals (Paxton & Dale, 2013), and so we predicted that se-
mantic alignment would be lower. Finally, because teaching
involves split roles, we predicted that alignment would be be-
tween these two extremes (cf. Fusaroli et al., 2012).

For two of these categories, the agents addressed strict
membership questions within a well-defined set. As an ex-
ample, the agents can be tasked to “debate whether golf is
a sport” or “decide if astrology is a science.” In the remain-
ing three categories, the agents handled evaluative questions
where the defined set was modified by a qualifier such as “ex-
plain why Moby Dick is a good book.”



These question types were selected for their compatibility
across all tasks. Our goal was to establish simulated conversa-
tion in as systematic a way as possible across all prompt con-
ditions. Both membership and evaluative questions could be
framed as: “Debate if [] is a [],” “Explain why [] is a [],” and
“Decide if [] is a [].” Although “Explain why [] is a []” is the
only prompt requesting asymmetric roles, we avoided spe-
cialized instructions as the agents naturally differentiated in
repeated testing. As LLMs are designed to be prompt sensi-
tive, minimizing textual differences across prompts allows us
to more confidently attribute observed statistical differences
to the primary independent variable: conversational task.

Procedure
After each prompt, minimal instructions were appended: “Af-
ter this sentence, all responses from the user will be from your
conversation partner.” This instruction was included to clarify
the role of the user in the conversation and maintain consis-
tency in agent responses.

For each prompt, each agent contributed five responses for
a total of ten responses. This limit was set to prevent Gem-
ini 1.5 Flash from deviating into irrelevant discussions, a ten-
dency observed with longer exchanges (Becker, 2024). While
a longer prompt could mitigate this issue, we opted to leave
the prompt concise to maintain consistency with human ex-
periment prompts. Once generated, the 90 conversations were
stored as individual ’.cha’ files for analysis.

Analysis
LLM conversations were stored in .cha CHAT format for con-
versational transcripts (MacWhinney, 2017). Each row rep-
resented a conversational turn, and conversations typically
ranged over a few hundred turns.

We computed entropy-convergence metrics for utterance
pairs separated by 20 or fewer indices. Each pair includes
both forward and reverse entropy, which can be interpreted as
two distinct pairs -— one where we compute entropy starting
from i to j and another where we compute it from j to i. Each
entry is uniquely specified by the conversation and the con-
versational depth of each utterance. As we are strictly study-
ing forward entropy relationships, we disregarded reverse en-
tropy in the following analysis.

Before conducting in-depth analysis, we truncated pairs
referencing the prompt (denoted as speaker “*HST” in the
‘.cha’ files) to ensure that the dataset only included LLM-
generated content. To normalize for turn length, raw entropy
values were divided by the number of tokens in their tok-
enized representation for roBERTa (Liu et al., 2019a), the
same model which computed entropy.

Convergence & Turn Distance
Because convergence is typically conceived as an evolving
feature of conversations, entropy-convergence metrics can be
visualized by plotting the average entropy for each discrete
turn distance. In this representation, each point (xi,yi) cor-
responds to the average semantic difference, quantified by

yi, for all turns that are xi turns apart. This approach miti-
gates confounding factors from conversational depth and iso-
lates the effects of turn distance. While a single data point
in isolation is difficult to interpret, extrema and trends in
the segmented line graph reveal underlying semantic patterns
throughout the conversation.

A common feature in convergence by turn distance graphs
is the appearance of parabolic structures, which highlight lo-
cal extrema and suggest referential patterns. Specifically, lo-
cal minima (xmin,ymin) indicate turn distances where utter-
ances most frequently reference prior turns, while local max-
ima suggest the opposite. Additionally, the local derivative
(xi,

∂yi
dx ) provides insight into whether references to prior turns

increase or decrease after xi. The overall correlation of the
graph reveals how quickly semantic content changes in a con-
versation (as relative turn comparisons drift apart in time).

Linear Discriminant Analysis
While convergence by turn distance graphs allow for qualita-
tive comparisons between conversations or conversation sets,
they do not provide a statistical means to determine whether
these sets are distinguishable. A common approach for classi-
fying and differentiating data distributions is Linear Discrimi-
nant Analysis (LDA), which finds linear combinations of fea-
tures that best separate instances of different classes (Duda,
Hart, & Stork, 2012).

Since each conversation consists of approximately a thou-
sand turn pairs, we reduced dimensionality prior to perform-
ing LDA. Specifically, we applied polynomial regression and
Principal Component Analysis (PCA) (Jolliffe, 2002) to en-
code conversations into a lower-dimensional feature space.
Instead of representing a pair as a tuple of utterance indices
(i, j), we equivalently represented each pair as a tuple of the
conversational depth of the first utterance i and the relative
distance between i and j, which can be positive or negative.
This reformulation allows us to model conversations using
the following function:

C : N×Z→ [0,1] (3)

At a high level, this function takes a natural number (rep-
resenting conversational depth) and an integer (representing
conversational distance) and returns a probabilistic entropy
value. Following prior studies using convergence-entropy
methods (Rosen & Dale, 2023), we approximated this func-
tion with a second-order polynomial regression for each con-
versation and represented each conversation using nine poly-
nomial coefficients. To ensure model stability and prevent
overfitting, we further reduced these coefficients to three prin-
cipal components using PCA before applying LDA.

By conducting these statistical analyses, we developed a
discriminative model to quantify the existence and signifi-
cance of conversational tasks in LLM-generated content.

Multivariate Analysis of Variance (MANOVA)
Multivariate Analysis of Variance (MANOVA) is a statistical
method used to evaluate the impact of an independent vari-



able on multiple dependent variables simultaneously (Hair,
Black, Babin, & Anderson, 2019). In this work, we apply
MANOVA to determine whether conversational tasks signif-
icantly influence the principal components identified in the
previous analysis. The key metrics of interest are the approx-
imate F-statistic which estimates effect strength and corre-
sponding p-value to assess statistical significance.

Results
From each set of 90 conversations, 89,440 and 177,920 turn
pairs were calculated in their convergence for Gemini 1.5
Flash and GPT-4o mini respectively (Figure 1). This discrep-
ancy, originating strictly from model choice, marks the first
of many differences that can be revealed by this methodology.
For the next three subsections, we will analyze results from
Gemini 1.5 Flash and compare them against GPT-4o mini in
the fourth.

Figure 1: The relative convergence entropy of the Gemini 1.5
Flash dataset follows an approximate Gaussian distribution
skewed to the left. With µ = 0.2834±0.0004 (marked with a
dashed blue line) and σ2 = 0.0046±2.17e−5, this distribu-
tion aligns with prior studies (Rosen & Dale, 2023).

Example with ‘Sports’ Topics
As a concrete example, we generated convergence by turn
distance graphs for all 18 sports-related conversations, sorted
by conversational task. Since each graph represents the aver-
age of only six samples, the results are not statistically signifi-
cant. However, this case study provides an informative visual
overview of expected trends and behaviors, allowing us to
assess how LLM-generated content differs by conversational
tasks.

Based on studies of human conversation, we expect differ-
ent convergence rates depending on the conversational task,
with consensus forming the fastest and debate the slowest.
This pattern is suggested in Figure 2, where the slope and rel-
ative magnitude of convergence entropy follow an increasing
order: consensus, explanation, and debate. The most striking
result of this case study is the distinct difference in slope, indi-
cating that the semantic content of debates shifts more rapidly

than explanations, which in turn shift faster than consensus.

Intrapersonal vs. Interpersonal Entropy
We generated convergence by turn distance graphs for all
90 conversations, sorted by conversational task and speaker.
Specifically, intrapersonal entropy includes pairs where both
utterances i and j are from the same speaker, while interper-
sonal entropy includes pairs where i and j come from dif-
ferent model “speakers.” These trends are statistically signif-
icant.

Since each utterance is in a pair that is interpersonal (com-
paring to the conversation partner) or intrapersonal (compar-
ing to an utterance by itself), there is a potentially inherent
negative correlation between interpersonal and intrapersonal
entropy when referencing past conversation. This is strongly
evident in the consensus and explanation tasks. This suggests
that in these tasks, Gemini references its partner in highly
consistent ways. By identifying upward-facing parabolas in
interpersonal entropy, we can pinpoint local minima, indicat-
ing the distances at which Gemini most often references the
semantic content of its partner. This is supported by corre-
sponding downward parabolas in intrapersonal entropy at the
same distances. Specifically, Gemini most frequently refer-
ences its partner around utterance distances of 5 and 15 for
consensus, and around distance 8 for explanation. Although
the exact cause cannot be isolated from this graph alone, it
is intriguing to note the distinct differences when Gemini is
asked to decide or explain a concept.

In contrast, debate tasks exhibit a strong positive correla-
tion with few local effects. This aligns with human research
suggesting that, in conflict, people tend to stick more firmly
to their own line of reasoning (cf. Paxton & Dale, 2014).

However, Gemini displays a distinctly non-human behav-
ior by referencing its partner’s content early in its turn, which
may reflect its assistive nature rather than human traits such
as the desire to be consistent or ego-driven behavior. While
some accounts emphasize the role of egocentric cognitive
processes in conversation (Epley, Morewedge, & Keysar,
2004), it is important to note that such processes may operate
at deeper levels of cognition and Gemini’s divergence likely
reflects more surface-level conversational dynamics.

Overall, Gemini exhibits notably distinct convergence en-
tropy patterns that vary by conversational task. Further re-
search is needed to identify the underlying causes of these
intriguing observations.

Linear Discriminant Analysis
Choosing the first three PCA components that explain 83.4%
of the variance as our features, we constructed our LDA mod-
els using leave-one-out cross-validation to estimate test er-
ror. This straightforward model performs reasonably well,
achieving an overall accuracy of 63.33%, p < 0.0000001
(Table 2). While fine-tuning and further model exploration
would likely improve performance, we opted to implement a
simple, interpretable model, as our primary goal is to demon-
strate that conversational tasks influence LLM-generated con-



Figure 2: To visualize variance in the data, we overlay the region corresponding to a 95% confidence interval around the
mean. As noted in prior studies, the absolute magnitude of convergence entropy is challenging to interpret (Rosen & Dale,
2023). However, when appropriately scaled, differences in how convergence evolves over time become apparent. Compared
to the overall dataset (Figure 1), sports-related conversations exhibit significantly lower entropy, particularly in consensus and
explanation tasks. This suggests that topic choice influences convergence entropy. In subsequent analyses, we generalize across
all topics to mitigate these effects.

Figure 3: Interpersonal and intrapersonal entropy of Gemini
1.5 Flash.

tent. In simple terms, this result suggests that features derived
from convergence of two LLMs can separate pragmatic goal
of a conversation.

From the confusion matrix (Figure 4), it is evident that
some conversational tasks are more easily differentiated than
others. For example, debate is the most distinct task, with the
model recognizing it with a balanced accuracy of 83.33%.
This aligns with predictions, as debate is the only conversa-
tional task that involves conflict. In contrast, consensus and
explanation are frequently confused with each other, as indi-
cated by the darker shading in the upper quadrant of the ma-
trix. Although the model can generally distinguish between
conversational tasks, the difficulty in differentiating consen-
sus from explanation supports our hypothesis.

Figure 4: Confusion Matrix for LDA Model of Gemini.

Gemini vs. GPT

Compared to Gemini 1.5 Flash, GPT-4o mini exhibits a
strongly assistive nature, as evidenced by the consistently low
initial interpersonal entropy across all three conversational
tasks (Figure 5). In contrast, Gemini 1.5 Flash displays dis-
tinct convergence entropy patterns for each task (Figure 3),
suggesting that GPT-4o mini is less sensitive to variations in
conversational tasks. This observation aligns with GPT-4o
mini’s tendency to always respond in an “Assistant” manner,
offering concise answers followed by detailed reasoning, a
behavior reinforced through its training (Ouyang et al., 2022).

This assistive and verbose style is also reflected in general
statistical measures. GPT-4o mini generates nearly twice as



Table 2: Performance Metrics for LDA Model of Gemini.

Metric Value
Accuracy 63.33% ± 0.32%
Kappa 0.45 ± 0.005
Sensitivity (Debate) 83.33% ± 0.25%
Sensitivity (Decide) 53.33% ± 0.33%
Sensitivity (Explain) 53.33% ± 0.33%
Balanced Accuracy (Debate) 83.33% ± 0.25%
Balanced Accuracy (Decide) 65.83% ± 0.31%
Balanced Accuracy (Explain) 68.33% ± 0.31%

many utterances as Gemini 1.5 Flash for the same prompts
and turns. Its commitment to this style is further supported by
the performance of our simple LDA model, which has lower
accuracy in distinguishing between tasks (63.33% vs. 47.78%
accuracy in Figure 3). Additionally, MANOVA tests show
that while both models produce task-dependent content, the
effect is significantly stronger for Gemini than for GPT (Ap-
proximate F statistic: 13.383 vs. 4.887 in Figure 3). Overall,
these findings confirm that GPT-4o mini is less sensitive to
conversational tasks, likely due to its training.

Conclusions
Our findings demonstrate that LLM-generated conversations
exhibit measurable conversational dynamics, as captured by
convergence-entropy metrics. There may be explanations for
certain topic-based behaviors. However our analysis is fo-
cused on the effects of conversational tasks as our primary
independent variable.

• Gemini 1.5 Flash and GPT-4o mini engage in distinct con-
versations dependent on the assigned conversational task.

• Segmenting the dataset by conversational task reveals
unique patterns, suggesting that specific tasks induce dis-
tinguishable conversational features.

• By comparing the effects of conversational tasks and their
induced features, we outline a quantitative approach for
comparing LLM conversational behaviors.

Our methods may be of particular interest to two research
communities: those studying LLM-generated text and those
exploring agent-based models of human communication.

For the former, our quantitative framework can assess
whether an LLM exhibits specific features, potentially con-
tributing to the development of a standardized benchmark for
evaluating conversational tendencies (cf. Hua & Artzi, 2024).
Such a benchmark could help characterize models based on
their ability to replicate human-like or task-specific behav-
iors. Specifically, we find that greater alignment separability
across conversational tasks correlates with task awareness to
some degree. Further research is needed to determine the ex-
tent to which this metric can serve as a reliable evaluation tool
for LLMs.

Table 3: Gemini 1.5 Flash vs. GPT 4o-mini Metrics.

Metric Gemini GPT
Dataset Size 89,440 177,920
µ 0.2834 ± 0.0004 0.2827 ± 0.0002
σ2 0.0046 ± 2.17e-5 0.0023 ± 7.71e-6
Approximate F 13.383 4.887
P-value of F 1.574 e−9 9.287 e−4

Accuracy 63.33% ± 0.32% 47.78% ± 0.23%
Kappa 0.45 ± 0.005 0.2167 ± 0.0035
Bal. Acc. (Debate) 83.33% ± 0.25% 52.50% ± 0.22%
Bal. Acc. (Decide) 65.83% ± 0.31% 60.00% ± 0.23%
Bal. Acc. (Explain) 68.33% ± 0.31% 70.00% ± 0.22%

Figure 5: Interpersonal and intrapersonal entropy of GPT-4o
mini. Downward parabola for Explanation interpersonal indi-
cates that GPT-4o mini introduces the most distinct semantic
content early in its reply. This aligns with its tendency to pro-
vide definitions initially and connect them to prior statements.

For the latter, our results highlight the potential of LLM-
based simulations for studying human conversational behav-
iors, demonstrating that, while LLMs do not display a perfect
match with human language use, they do exhibit a number
of useful characteristics that can be leveraged in an idealized
model of human communication.

This study is limited by its experimental design and the
high-level nature of its convergence-entropy analysis. To con-
fidently attribute specific behaviors to human analogs, fu-
ture research should introduce additional controls or apply
convergence-entropy metrics to established human conversa-
tion datasets, potentially by replicating the same task in hu-
man dyads for comparison. In either case, the results pre-
sented here provide an immediate baseline to which such
work can be compared, and provide us with grounds to make
predictions about human dialog on the basis of our results.
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