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Abstract
There is an important challenge in systematically interpreting the internal representations
of deep neural networks (DNNs). Existing techniques are often less effective for non-
tabular tasks, or they primarily focus on qualitative, ad-hoc interpretations of models. In
response, this study introduces a cognitive science-inspired, multi-dimensional quantifi-
cation and visualization approach that captures two temporal dimensions of model learn-
ing: the “information-processing trajectory” and the “developmental trajectory.” The for-
mer represents the influence of incoming signals on an agent’s decision-making, while
the latter conceptualizes the gradual improvement in an agent’s performance through-
out its lifespan. Tracking the learning curves of DNNs enables researchers to explicitly
identify the model appropriateness of a given task, examine the properties of the under-
lying input signals, and assess the model’s alignment (or lack thereof) with human learn-
ing experiences. To illustrate this method, we conducted 750 runs of simulations on two
temporal tasks: gesture detection and sentence classification, showcasing its applicabil-
ity across different types of deep learning tasks. Using four descriptive metrics to quan-
tify the mapped learning curves—start, end – start, max, tmax—, we identified significant
differences in learning patterns based on data sources and class distinctions (all p’s <
.0001), the prominent role of spatial semantics in gesture learning, and larger information
gains in language learning. We highlight three key insights gained from mapping learning
curves: non –monotonic progress, pairwise comparisons, and domain distinctions. We reflect on
the theoretical implications of this method for cognitive processing, language models and
representations from multiple modalities.

Author summary
Deep learning networks, specifically recurrent neural networks (RNNs), are designed
for processing incoming signals sequentially, making them intuitive computational
systems for studying cognitive processing that involves dynamic contexts. There has
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been a tradition in the fields of machine learning and neuro-cognitive science to exam-
ine how a system (either humans or models) represents information through various
computational and statistical techniques. Our study takes this one step further by devis-
ing a technique for examining the “learning curves” of deep learning networks utilizing
the sequential representations as part of RNNs’ architectures. Just as humans develop
learning curves when solving problems, the introduced method captures both how
incoming signals help improve decision-making and how a system’s problem-solving
abilities enhance when encountering the same situation multiple times throughout its
lifespan. Our study selected two distinct tasks: gesture detection and emotion tweet
classification, to illustrate the insights researchers can draw from mapping models’
learning curves. The proposed method hinted that gesture learning experiences are
smoother, while language learning relies on sudden knowledge gains during processing,
corroborating the findings from previous literature.

simulations is available from
https://github.com/linuxsino/iMiGUE and https:
//huggingface.co/datasets/dair-ai/emotion.
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Introduction
Over the past decade, deep learning and neural networks have achieved remarkable perfor-
mance in prediction and classification tasks in various domains, from machine translation
and object recognition, to autonomous driving and reinforcement learning [1,2]. As powerful
representational learning tools, deep neural networks (DNNs) can capture complex patterns
in data [1], yet understanding the nature of the information embedded in their multidimen-
sional representations remains a challenge. Researchers have raised concerns about how DNN
embeddings represent knowledge and how to holistically interpret these high-dimensional
features [3–6]. Over-reliance on such models for decision-making could be detrimental in
both research and applied settings due to their complexity and lack of explainability. This is
particularly concerning when models rely on biased training data that does not generalize well
to target tasks [7,8]. Without a deep understanding of these models’ underlying properties,
they may fail to align with the goals of their human designers.

Recently, there has been a combined effort from cognitive science and deep learning to
utilize representational learning to address model explainability concerns. These practices
have become more prominent due to the success of large-scale models [17], especially large-
language models [18]. For example, in the case of language models, examining the internal
processes of the BERT Transformer-based architecture has shown that it may recapitulate
common natural language processing (NLP) pipelines [19–21]. Chang and Bergen [22] found
that the frequency and n-gram structure of word tokens significantly alters the training for
language Transformer models learning these words.

Inspired by this prior work, this paper outlines a technique for examining the learning tra-
jectories of deep learning models, in particular recurrent neural networks (RNNs). There is
historical precedent for our approach, too. McClelland, Rogers and others have studied the
underlying knowledge of neural networks by tracking them as they learn [10,23]. Despite
this classic work in cognitive science, it is uncommon to see deep learning models that track
progress as a way to unpack what is learned (e.g., going beyond simple RMSE curves; but see
also [18], for a counterexample). We term this tracking a “learning curve,” as it resembles
research on how human learners process incoming information and improve decision-making
through iterations under different situations. A unique benefit with simulation is the possi-
bility to examine many dimensions and measurements of the neural network over time. In
the next section, we review recent work on interpreting DNNs and related models. We then
introduce our approach based on learning curves.
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Background
To date, various techniques have been proposed to interpret DNNs. For example, many model
interpretability techniques provide task-specific and local explanations, such as saliency maps,
attention maps, or Layer-wise Relevance Propagation (LRP), which interpret or visualize the
localized influence of a region on the output. These ad-hoc approaches can be unstable, as
even a minor change in a single pixel or hyperparameter can substantially affect the local rela-
tionships between input signals and output data [24]. Additionally, these local explanations
fail to offer a global understanding of whether the selected architecture is well-suited to the
task or how the DNNmodels experience learning. On the other hand, feature attribution
methods like SHAP [66] and LIME [67], while conceptually easier to interpret and model-
agnostic, tend to work more intuitively with interpretable dimensions typically found in struc-
tured tabular data. These methods are less effective for unstructured tasks, such as image and
audio data, where feature dimensions are harder to define or interpret. While most techniques
emphasize the qualitative interpretation of a model, such as what has been learned or cap-
tured by the DNN, the absence of quantifiable measurements makes cross-model compar-
isons in unstructured tasks particularly challenging [4,5,25]. We further provided a systematic
description of different model explainability methods, along with their pros, cons, and use
cases, as well as a comparison to our proposed approach in Table 1.

In a foundational article on deep learning, LeCun and the colleagues [1] characterized
DNNs as representation-learning methods utilizing multilayered large neural network-style
models. Representations can be viewed as mental objects capturing semantic properties either
observable or unobservable [26]. Different from traditional machine learning models, DNNs
display remarkable flexibility and efficiency in encoding lower-level input signals, such as
pixels, audio frequencies, or word tokens, into multidimensional vectors at a sophisticated
level through multilayered nonlinear transformations [27]. These transformations generate
multiple levels of representations that learn hierarchies of features at each layer [1]. The con-
tinuous numerical vectors (or hidden vectors) learned at each level are commonly referred
to as “embeddings” and serve as dense representations of the original input data. Follow-
ing this construction, numerous studies have demonstrated the correspondence between

Table 1. DNN Explainability Methods Comparison.
DNN Explainability
Method

Description Advantages Limitations Use Cases

Learning Curve
(Proposed Method)

Track the model’s
learning experi-
ence over time by
utilizing classifica-
tion performance of
embeddings.

Captures dynamic
changes in embed-
dings during training.
Insight into perfor-
mance evolution
across two temporal
dimensions.

Limited to tem-
poral tasks and
DNN architectures.
Computationally
expensive.

Tasks involving tempo-
ral aspects and learning
experiences.

Saliency Maps Visualizes regions in
image input that most
influence the output.

Simple and intuitive
visual explanation.
Easy to implement.

Prone to noise. Lacks
global interpretation.

Image recognition
tasks and image-based
models.

Feature Attribution Infers relevance of
input features to
output.

Conceptually easy to
grasp. Model-agnostic
approach.

More suited for
structured data.
Less intuitive for
unstructured data.

Tabular data and
structured tasks.

Layer-wise Relevance
Propagation (LRP)

Breaks down classifi-
cation decision into
contributions of input
elements.

Applicable to a wide
variety of DNN
models.

Lacks global
interpretability.
Requires complex
configuration.

Image recognition,
NLP, structured data.

https://doi.org/10.1371/journal.pcbi.1012286.t001
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DNN-generated and real-world distributed representations among words and sentences [11,
28], speeches [29], images [9], objects [30] and scenes [31,32]. Representational learning in
DNNs offers fundamental contributions to cognitive science, as it can inform how cognitive
systems process and organize knowledge, facilitating the comparison of learning processes
between humans and machines [33–35].

Recently, several studies in cognitive science and neuroscience have highlighted the impor-
tance of integrative modeling between computation, human brains and behaviors [12].
Beyond comparisons of static end-point knowledge, scholars have begun exploring the poten-
tial correspondence in learning and information processing between DNNs and human cog-
nitive systems, given that the current performance of DNNs can already approximate human
performance across various domains [36–38] (see [18] for a review). For instance, the repre-
sentations (i.e., embeddings) extracted from multilayered DNNs have shown significant accu-
racy in predicting neural and behavioral responses in humans throughout the hierarchy of
learning and processing. This evidence spans multiple neural-behavioral measurements (e.g.,
fMRI, EEG, ECoG), modalities (e.g., visual, auditory, and language processing), and model
architectures (ranging from simple embedding models like GloVe to more complex neural
networks such as RNNs, convolutional neural networks (CNNs), and transformer models (for
further details, see [9,11,12,23,39,40]).

Given the extensive alignment observed between DNN embeddings and neural-behavioral
activities, and their presumed meaningful representational mapping with human cognitive
systems, an analysis of how they emerge in learning would seem important to understand
these relationships. Goldstein and colleagues [11] identify the temporal correspondence
between layer-by-layer embeddings in GPT-2 and evolving neural activities in language areas.
However, this temporality is restricted to layerwise representations (from low-level to high-
level representations) rather than how streams of signals have been received and processed by
models or brains [38]. Our aim in this paper is to use temporal analysis in a systematic way
by separating and tracking the time course of a network’s learning across classification tasks,
thereby enhancing the understanding of the emergence of representations in DNNs.

The current study
The goal of this study is to unpack the “learning curve” of DNNs through a sequence of hid-
den representations when the model encounters any temporal processing tasks across its
training. To do so, we sample the network’s performance by using its embedding vectors to
classify groups of items in its training input. This allows us to map out the progression of the
network’s discriminations across these groups – how the network’s internal knowledge, in the
form of embedding vectors, evolves during training.

The model architecture we focus on is RNNs due to their capacity to model sequential
data and time-dependent tasks [41], such as text generation, speech recognition and stock
market prediction. Although other deep learning architectures, such as CNNs and Trans-
formers, also have the capacity to process time-series data, RNNs are explicitly designed for
processing sequential data, as they effectively capture temporal dependencies through their
recurrent connections. CNNs excel in tasks such as image recognition by applying the ker-
nel trick, where convolutional filters are used to extract spatial features from local regions of
the input. While CNNs can be adapted to handle sequential data using techniques like 1D
convolutional layers, they lack the inherent ability to capture temporal ordering in the data,
as they process each segment of input independently. Transformers, on the other hand, rely
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on self-attention mechanisms to weigh the importance of different input tokens in paral-
lel, allowing them to capture dependencies between distant elements (i.e., tokens). This fea-
ture makes Transformers better suited for tasks where relationships between tokens are not
strictly ordered in time, and their parallel processing nature is less ideal for learning tasks that
require explicit temporal progression. In sum, the strict sequential processing nature of RNNs
makes them an intuitive architecture for studying cognitive processing that involves dynamic,
changing contexts [42].

In this study, we propose a generalizable interpretability approach that maps the global
learning curves of RNNs based on changes in classification performance between embeddings
and output across timesteps of the input data. This performance reflects the predictive capac-
ity or the amount of signal captured by the embeddings in predicting the final output. In RNN
modeling, each timestep generates an embedding (e.g., in language processing, each timestep
represents a word). These embeddings progressively incorporate information from the begin-
ning up to timestep t. By examining changes in classification performance between these
embeddings and the output, we can capture how the information evolves over time. To pro-
vide clarity, we use the term “learning curve” in this study to denote the holistic approach and
intention behind mapping the underlying processing and developmental journey of DNNs.
The method we propose separates two parts of the learning curve, one based on overall train-
ing, and another based on processing within input items during training. First, the “develop-
mental trajectory” signifies the long-term learning process of DNNs, which is simulated by
the increasing number of epochs (i.e., complete passes through an entire training dataset).
Second, the “(information) processing trajectory” refers to the momentary accumulation of
information across all timesteps (within an epoch), extractable from the performance of the
RNN layer (see Fig 1 for a conceptual illustration). We detail each of these further below.

As Fig 1 illustrates, the resulting visualization consists of learning curves with timesteps
on the x-axis and performance on the y-axis. Each epoch contains an information processing
trajectory, and the set of curves together forms a developmental trajectory. Due to the multi-
dimensional nature of this plot, while it provides rich qualitative information about the entire
model learning experience, it can be challenging for researchers to comprehend all the con-
structed curves at once. Therefore, beyond the visual presentation and qualitative inspection
of the multi-dimensional learning curves, this study further defines four measures: start per-
formance (start, the initial capacity of each information processing), max performance (max,
the maximum performance of each information processing), time at max (tmax, when the
current information processing reaches the maximum performance), and end – start perfor-
mance (end – start, the overall performance gain in this information processing) – to facilitate
quantitative comparisons across tasks and datasets. Our study particularly focuses on these
relatively easy-to-comprehend descriptive statistics (as opposed to more complex metrics like
regression coefficients) to simplify the understanding of the already multidimensional and
granular nature of the constructed learning curves.

To illustrate the generalizability of our approach, we chose two distinct classification tasks:
(i) sentence classification and (ii) gesture detection. These tasks differ widely in terms of their
modalities. We predicted this would lead to variation in the underlying data generation pro-
cesses and associated cognitive processing for each modality. In particular, gesture and body
movements primarily result from the coordinated contraction and relaxation of muscles, with
signals produced at later timesteps derived from the previous timesteps with relatively high
autocorrelation [43]. On the other hand, verbal language, being a predominantly semantic
modality, exhibits degrees of surprisal and arbitrariness that enhance the cognitive capacity
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Fig 1. A conceptual illustration of learning curves in DNNs.The solid curve represents an individual information processing trajectory (across timesteps). For
example, as an agent receives more signals over time in one session, its prediction of the gesture increases. The bundle of dotted lines represents a developmental
trajectory (across epochs). For instance, this agent improves its ability to predict incoming gestures after repeatedly encountering similar patterns. In a typical binary
classification task, the starting point at t=0 is expected to be near 0.50 (and gradually increase to 1.00 across timesteps and epochs) for all epochs because no signals
have been provided at the first timestep for solving the underlying task. Hence, all information processing curves in this figure have the same starting point to reflect
this pattern. In practice, certain classification tasks might contain structural information even at t=0 (e.g., gesture classification contains spatial information, such as
the location of keypoints, at the initial timestep, which could help solve the gesture task from the very beginning).

https://doi.org/10.1371/journal.pcbi.1012286.g001

of language processing [44–46]. Therefore, the expected developmental and information pro-
cessing trajectories will likely exhibit distinguishable patterns across the two different tasks
when the DNN system processes them respectively.

As we discuss in detail in later sections, this method has a few benefits. Through tracking
the learning trajectory of a neural network, researchers can explicitly identify the appropriate-
ness of a model for a given task as well as examine the properties of underlying input signals.
This approach could also serve as a standalone visualization to map the accumulation of the
underlying signals processed, which can facilitate research on deep learning modeling and
signal processing across various modalities. Finally, mapping the learning curve of DNNs has
the potential to assist future computational cognitive and neuroscience research and address
whether the learning experiences of models also correspond to (or fail to correspond to) the
temporal processing in human cognition in addition to the emphasis on static representations
in the current literature.

In the following sections, we will provide a step-by-step method for visualizing the learn-
ing curves of neural networks, illustrate how to holistically interpret signal processing in them
and quantitatively compare these curves across two different datasets.

Methods
This research proposes a model-interpretability method that can extract the learning curve
of sequence-based deep learning networks (e.g., RNNs). Inspired by cognitive science, the
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method measures the learning trajectory and underlying knowledge extracted by such net-
works. To illustrate the method, we use two temporal tasks: gesture detection and sentence
classification as examples. This study therefore demonstrates that the method could inform a
range of deep-learning tasks.

Our multi-stage pipeline includes three main steps. First, we trained the RNN-LSTM
model to generate a sequence of embeddings for a temporal task. Next, we used KNN clas-
sifiers to calculate the performance across all extracted embeddings, which we refer to as
learning curves (see (2) in Fig 2). Finally, we defined four metrics to quantify these multi-
dimensional embeddings for more systematic comparison and significant tests between tasks,
classes, the null hypothesis, and development trajectories. The visualization of this multi-stage
procedure can be found in Fig 2.

Datasets
This study utilized two datasets: the Identity-free Video Dataset for Micro-Gesture Under-
standing and Emotion Analysis (iMiGUE) by [48] and the Emotion dataset from Hugging
Face by [49] to examine the possibility of mapping learning curves for tasks involving tem-
porality. The two temporal tasks (i.e., gesture detection and sentence classification) are dis-
tinct in terms of their modalities, lengths, and the steps required to extract and preprocess the
features, thereby enhancing the diversity of data to illustrate the learning curve analysis. We
detail the preparation of each dataset separately below.

Emotion tweet classification (sentence classification). The Emotion dataset [49] consists
of 20,000 English Twitter messages with six basic emotions (e.g., anger, fear, joy, love, sadness,
and surprise) by adopting Plutchik’s [50] wheel of emotions, Ekman’s [51] six basic emotions,

Fig 2. A flowchart of the multi-stage pipeline. Illustrations of the multi-stage pipeline, from extracting embeddings to constructing learning curves and quantifying the
curves using four defined metrics. NB: Gesture figures are adapted fromWikimedia Commons [47].

https://doi.org/10.1371/journal.pcbi.1012286.g002
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and hashtags in tweets. Tweets were annotated through noisy labels and distant supervision
introduced by [52].

To prepare the emotion sentences for recognition by the RNN layer, we first applied the
“basic English” tokenizer from torchtext to tokenize each tweet. Then, we used GloVe (Global
Vectors for Word Representation), a word vectorization technique that does not rely on local
word context statistics (local-context information), to vectorize each token in a sentence.
GloVe was preferred over other token vectorization techniques like word2vec [53] due to its
design to capture the universal meaning of each token/word, rather than the word’s meaning
within a specific sentence or context. We opted for GloVe embeddings with 300-dimensional
semantic features because it strikes a balance between capturing sufficient information and
maintaining computational efficiency [35].

In theory, the input sequences of RNN are not required to have the same length. In prac-
tice, these sequences are padded with zeros or trimmed to the same length to optimize the
computation in PyTorch. Accordingly, all tokenized tweets were padded to a consistent length
of 66 tokens, which corresponds to the length of the longest tweet sample. The shape of each
Emotion tweet follows a 300 dimensions × 66 timesteps (see Fig 3).

Gesture classification. The iMiGUE is a high-quality dataset that contains 18,499
identity-free, ethnically-diverse, gender-balanced samples of 32 psychologically-meaningful
micro-gestures (such as scratching an arm, adjusting the hair, or touching an ear [51]). These
gestures were all curated from interview clips with athletes at post-match press conferences.
Unlike other gesture and emotion datasets, which are typically drawn from staged perfor-
mances or movie clips, the iMiGUE provides samples of actual gestures from real-life situa-
tions. This poses a more realistic, though more challenging, recognition task for deep learning
networks [54,55].

Due to copyright restrictions, the dataset includes only skeleton keypoints (rather than
original interview clips) extracted from OpenPose, a multi-person computer-vision system
that can simultaneously extract keypoints of the body, hands, face, and feet [56]1. In total, 25
body, 70 facial, and 21 left hand and 21 right hand keypoints were extracted for each frame
using OpenPose. Keypoint data were stored in the following format: [x0,y0,c0,x1,y1,c1… ], in
which (x, y) represents the coordinate of each keypoint and c indicates the confidence score
of each keypoint-coordinate prediction. The confidence score was excluded in the following
processing steps.

Although the gesture clips have just 39 frames on average, they have a higher standard
deviation at 84 frames with a 75th percentile of 72 frames. We therefore set the padded length
of the input sequence to 150 frames to ensure that our input data contained sufficient infor-
mation for training a classifier. Thus, the input size for each gesture clip was 274 units (137
keypoints × 2) × 150 timesteps (see Fig 3).

It is important to note that our aim here is not to approach benchmark performance, but
rather to examine successful learning. The learning curve analysis will show how that success-
ful learning emerges, and which stimulus discriminations seem to underlie that emergence.
Since even the state-of-the-art neural network can achieve only 55% accuracy on this multi-
classification task [48], we further grouped the 32 micro-gestures into six categories (body,
head, hand, body-head, head-hand movements and an absence of gestures) to ensure that our
RNN-LSTM was indeed “learning” when we attempted to map its learning curve.

1 The advantages of using key point data are twofold. First, keypoint data conserves significant computing power;
since each second of image sequences (i.e., matrices of pixels) may contain as many as 30 or 40 frames, running deep
learning models on image sequences can be prohibitively expensive. Second, it provides better interpretability and
understandability. Instead of being possible only through abstract information at the image-frame level, gesture
detection can be operationalized as a sequential movement in keypoints across frames [57].
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Fig 3. Sequential data for Emotion Tweet (left) and Gesture Classifications (right). NB: Gesture figures are adapted fromWikimedia Commons [47].

https://doi.org/10.1371/journal.pcbi.1012286.g003

Model architecture
We selected a model architecture (see Fig 4) that is standardized for sequential stimulus pro-
cessing in the following way. First, we had a batch normalization layer, a primary RNN-LSTM
layer, and then a fully connected layer to connect the final dense embeddings with the output
classes (for classification). We offer details below.

RNN-LSTM. RNN is capable of modeling sequential data and time-dependent tasks
[41]. Its architecture represents an iterative function that takes an input sequence (x) and

Fig 4. Model architecture of RNN-LSTM. NB: Gesture figures are adapted fromWikimedia Commons [47].

https://doi.org/10.1371/journal.pcbi.1012286.g004
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an internal state (h) from the previous timestep (t - 1) to predict the current timestep (t), then
updates the state as follows:

ht = f(xt–1,ht–1) t = {0, 1, 2,… ,T – 1} (1)

As the formula illustrates, each timestep t should theoretically reflect the information from
0 to t – 1. We selected the RNN model for gesture detection because it can process temporal
information under the assumption that the body movement in each timestep depends on
signals in the previous timesteps.

While an RNN could leverage the context between elements by maintaining its inter-
nal state while processing the entire sequence, the “Vanilla RNN” layer experienced the
vanishing-gradient problem during model training [58]. Therefore, long short-term memory
(LSTM), which is represented by the function f in Equation 1, was introduced here as an addi-
tional state variable, called the cell state, for controlling specific information that needed to
be kept or updated while processing the entire sequence [57]. LSTM effectively reduced the
vanishing-gradient problem encountered by RNN [58].

Feedforward network. The construction of our RNN-LSTM neural network follows
common practice in deep learning. First, to enhance training stability and speed up conver-
gence, we applied batch normalization, specifically the BatchNorm1d layer, to the input data
at each timestep, with dimensions batch_size × timestep × input_dimension (1 × 150 × 274
for iMiGUE and 1 × 66 × 300 for Emotion). This means that each timestep is treated inde-
pendently, and normalization is applied across all data points in the batch for each timestep.
Specifically, this technique normalizes the inputs to have a mean of 0 and a variance of 1
within each timestep, standardizing the distribution of inputs across the data points in each
batch during training. Then, an RNN-LSTM was applied to the normalized input to con-
vert temporal information to a dense embedding at each timestep. An RNN-LSTM with an
equal hidden dimension was selected to simplify the tracking of embeddings in the later stage.
Finally, a fully connected layer, without any activation, was applied to the embeddings in the
last timestep t to predict output labels.

Deep learning simulation
To ensure the generalizability of our learning curve mapping approach, we performed 15
rounds of simulation for both gesture and emotion detection tasks, each of which included
15 (6C2) pairwise binary classifications. We conducted 25 repetitions (reps) for each set of
simulations (sims) to mitigate the idiosyncrasies of specific processing and developmental
patterns we are extracting under each pairwise condition. In total, we collected 25 × 15 × 2
( reps × sims × tasks) = 750 runs of simulation data. Having an adequate number of simula-
tion runs also enables us to observe clustering tendencies in the convergence and divergence
of trajectory patterns across various tasks and different classes.

In each simulation, 20% of the shuffled samples were used as the test data, while the
remaining data were further split into 80% training data and 20% validation data. While val-
idation data were used for reporting each epoch’s model performance, test data were used for
reporting the final model performance on unseen data.

The number of epochs indicates the number of times an entire dataset has been passed for-
ward and backward through the neural network. We set the number of epochs to 50 for both
tasks, given that most of the variation in learning tends to unfold during the early stages of
development. In S3 Text and S4 Text we also illustrate how using 20 and 100 epochs leads to
similar observed patterns.
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Because deep learning algorithms are very sensitive to unbalanced datasets, we applied
data augmentation to the training and validation datasets. Specifically, the minority class
was up-sampled to match the number of data points in the majority class, which ensured a
balanced dataset [59].

Default initiation from PyTorch was used to standardize the model specification across
simulations. All simulation runs were trained using the Adam optimizer with a learning rate
of 0.001, and the loss function used was the cross-entropy loss for all pairwise classifications.
All the other learning rate hyperparameters were kept at their default values.

Since deep learning is, computationally speaking, very expensive to train, the model was
run on Nvidia RTX 4090 to expedite the processing. We set the batch size to 64 for gesture
recognition and 256 for emotion classification to achieve an optimal balance between training
speed and performance.2

To map a learning curve for each simulation, we first extracted embeddings of all LSTM
timesteps from the hidden layer. We then applied multiple interpretable machine-learning
models between these embeddings and the corresponding output labels to understand how
the model’s confidence is updated during the LSTM timesteps.

Embedding extraction. We extracted the LSTM array of all timesteps for all batches
across all epochs on the test data to ensure that we were extracting embeddings from all devel-
opmental stages and the final model was adequately trained on the targeted task. Since we
specified the same dimension of the input data for the LSTM hidden layer, for the gesture
detection task, we obtained 150 LSTM arrays from 150 timesteps, each array having the size
of 1 × hidden_dimension (1 × 274). Similarly, we obtained 66 LSTM arrays in sentence classi-
fication, each with a size of 1 × 300. We then stored the corresponding output labels of those
arrays as an output array. Those LSTM arrays share one output array since they are embed-
dings at different timesteps of the same data points.

For binary classification, the labels were encoded as 0 and 1. Once the model had been
trained and the embeddings extracted, we stored and processed those embeddings in RAM,
which has a greater storing capacity than GPU.

Mapping the learning curves. To approximate the processing curve of a model’s confi-
dence across the LSTM timesteps, this study used a popular machine learning algorithm, k-
nearest neighbors (KNN) for identifying embedding “separatables.” This algorithm classifies
an object by using a majority vote of its neighbor data points [60,61]. Because embeddings are
seen as a high-dimensional physical (i.e., location-wise) projection of input data (as opposed
to a multivariate representation [1]), distance-based models, such as KNN and support vec-
tor machine (SVM), are popular choices for examining DNN embeddings in previous studies.
Specifically, we applied KNN to the data point (xt, y), where xt is the LSTM embedding at t
timestep and y is the corresponding output label and calculated the KNN accuracy across all
timesteps (information processing trajectory) and all epochs (developmental trajectory), and
thus captured the learning curve of the model.

Quantifying performance across epochs
These learning curves examine how the LSTM’s embeddings classify the stimulus as it is
incrementally presented to the network. Visually, each curve is plotted as the proportion of
correct classifications across the item. These constructed learning curves can be analyzed

2 The large batch size for emotion classification is due to each of its input data points using less space compared to
the gesture input.
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in various ways, either through qualitative interpretation of the visualizations or by apply-
ing statistical analysis for quantification and hypothesis testing. In this study, we utilized the
four descriptives statistics introduced earlier to assess the multidimensional KKN classifi-
cation performance of the RNN-LSTM (i.e, how the discriminability of the model is evolv-
ing) across its training on two datasets, reconstructing and analyzing the unfolding learning
dynamics of these distinct learning tasks. Specifically, for each such curve, we extracted four
simple descriptive metrics: start, end - start,max, tmax. In Fig 5, we illustrate these descriptive
statistics from an example trajectory of a single classification run for each dataset.

First, we defined the maximum performance (max) and the percentage of time at which
that maximum was achieved in the presented item (tmax) over the whole timesteps. We

Fig 5. Examples at epoch 1 and 50 of binary classification across a test input for one run of the network. From epoch 1 to epoch 50, the LSTM’s embeddings are able
to classify successfully over the test item, and we can characterize this success as a change to its performance using four metrics described in the main body of the text
(start, end - start,max, tmax). Top: Example item from the sentence task. Bottom: Example item from the gesture task.

https://doi.org/10.1371/journal.pcbi.1012286.g005
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included tmax alongsidemax because we discovered thatmax alone is not sufficient to deter-
mine performance, especially earlier in training. This is because the network may exhibit
unstable performance, dropping across subsequent time slices, which may be indicative of
a non-monotonic learning trend seen in related domains [62]. This also suggests the net-
work has learned something about the initial segments of an item, but the later segments
wash out its performance as it has not yet encoded these later features. To capture this trend,
we use tmax to assess when that maximum was achieved within each information process-
ing trajectory – specifically, the percentage of the time slice at which the observed maximum
occurred. In Fig 5 above, we show an illustration of this in the top left. The network achieved
a performance of 0.82 on this particular item, but failed to sustain this performance as it
dropped to near 0.50 as the sequence unfolds (at epoch 1). In the top right, the performance
improves approximately monotonically across time slices (by epoch 50), and tmax is achieved
near the final bin of the training item.

Additionally, we assess the performance at the start and end of the presented stimulus
(start, end). Performance at the start may indicate the relative gains that can be expected from
a stimulus item. As shown in the bottom panels of Fig 5, the gesture input already has perfor-
mance above chance (∼ 0.80) after the very first segment of the stimulus item. This suggests
the model rapidly exploits spatial information in gesture (i.e., the location of keypoint coor-
dinates can already vaguely differentiate gesture classes before sequential movement infor-
mation is fed into the model). A model that achieves near-perfect performance at start and
sustains it does not need to be exposed to the subsequent stimulus. The last measure we use is
the subtraction of end - start performance. A high value on this measure suggests the network
gets substantial information gains across a test item. For example, even at epoch 50 in the bot-
tom right, the end - start of the gesture item is substantially lower than the simulation trained
on the sentence task.

These measures can be plotted across epochs. Each learning curve now indicates how an
item is being processed across an LSTM’s overall training. The measures are relevant to two
timescales in the network’s behavior we conceptualized earlier: developmental (or learning)
and information-processing timescales. For example, across epochs, movement along the start
measure represents the initial performance at the item’s first time slice at the beginning of
each information processing session. The end - start measure within an epoch can describe
the relative information gains during each processing session from the item’s full presenta-
tion. Themax represents the best performance achievable in a session, indicating the net-
work’s current information processing capacity. Finally, if tmax is low, it suggests that the net-
work’s maximum performance of the current session is hindered by subsequent timesteps,
implying that additional training may be necessary.

Results
We took the output from the KNN classification in Python, described above, and designed
a sequence of R scripts to measure, visualize and quantify the trends in these four measures
(start, end - start,max, tmax). R’s suite of visualization tools provided a convenient arena
within which to view trends across epochs, and in these analysis scripts we also built linear
models to statistically test the significance of these trends. All of the scripts in our methods
are available at GitHub here: https://github.com/JoyceJiang73/Learning-Curves/. The R scripts
only require input of simulation CSV data that contain as fields: binary classification labels,
time slice, epoch, and performance measure (e.g., KNN classification performance).

We have reported the trained RNNmodel performance for the average of all pairwise sim-
ulations of sentence and gesture classification (epochs = 50) in S1 Text, including metrics
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such as validation accuracy, validation loss, test accuracy, test loss, recall, precision, and F1.
These results confirm that almost all pairwise classifications have been sufficiently trained,
indicating that the learning curves are capturing the learned experiences.

For each of the four metrics, we conducted a series of significance tests using regression
models to assess distinctness across data sources, reshuffled null data, classes, and epochs.
Specifically: (1) A linear model was used to assess whether the learning curves of the two
datasets differed significantly, (2) A linear model evaluated whether the learning curve for
each training classification task significantly deviated from a superimposed (randomly reshuf-
fled) null hypothesis across the four metrics, (3) Linear models were used to assess whether
the learning curves for each dataset were distinct by class and across epochs, and (4) An
ANOVA test was performed to determine whether class differences contributed more to
developmental progression than epoch alone. All the significance tests (Adjusted R-squared)
are reported in Table 2, and the corresponding visualizations for each metric are provided in
their respective sections.

Start performance
In Fig 6, we show the LSTM performance at the start of an item across epochs of training. In
general, the sentence dataset shows low, near-chance performance, while gesture classifica-
tions are already well above chance performance. This chance-level performance for sentence
items stays consistent across the entire training period, though the gestural dataset shows
some improvement. For the gesture dataset, this suggests that the network has some infor-
mation about a classification before much of a training item is even shown to the network. It
would indicate that gestural data has spatial information in the point coordinates of the body
and is exploited by the network at the very first time bin. With language, it takes time for word
embedding vectors to be integrated in the network.

To confirm these trends, we tested a linear model that predicted start performance by
training data, showing that dataset accounted for about 98.14% (p < .0001) of the variance
seen in Fig 6. The classification of the gesture data accounts for 95.51% (p < .0001) of variance

Table 2. A series of significance tests using regression models to assess distinctness across data sources, reshuffled
null data, classes, and epochs.
Model start max tmax end-start
Data Source Difference
Data Source 0.9814**** 0.0211**** 0.0034**** 0.3923****
Baseline Null
Sentence Reshuffle 0.0001 0.0042**** 0.0120**** 0.0027****
Gesture Reshuffle 0.0824**** 0.0722**** 0.0058**** 0.0340****
Epoch and Class Differences
Sentence Class 0.1022**** 0.2736**** 0.0951**** 0.1301****
Gesture Class 0.9231**** 0.8250**** 0.2495**** 0.3808****
Sentence Epoch*Class 0.1028**** 0.6215**** 0.4910**** 0.5232****
Gesture Epoch*Class 0.9551**** 0.9732**** 0.6315**** 0.6530****
Contribution of Class Differences to Epoch (Developmental) Progression
Sentence Epoch*Class -
Epoch

0.1045**** 0.3010**** 0.1160**** 0.1437****

Gesture Epoch*Class -
Epoch

0.9336**** 0.8539**** 0.2868**** 0.4282****

*Significance tests using regression models to assess distinctness across data sources, reshuffled null data, classes, and epochs for the four metrics
(start, end - start,max, tmax). Adjusted R2 values are reported along with the significance levels (* p < 0.05, ** p < 0.01, *** p < 0.001, ****
p < 0.0001).

https://doi.org/10.1371/journal.pcbi.1012286.t002
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Fig 6. Start performance for pairwise classifications. Start metric over epochs, indicating that in the sentence task, the classification at the first time slice remains
stable near change, whereas the LSTM’s embeddings for the gesture task are distinct across stimulus types, and also show slightly more improvement over training
(while already being well above change relative to the sentence task).

https://doi.org/10.1371/journal.pcbi.1012286.g006

internally to that dataset, whereas for sentence classifications accounts only for 10.28% (lower
but also significant, p < .0001). The learning curves reveal that the first word of a language
task has low diagnostic accuracy for a classification, but the spatial variance over gestural
classifications is much more informative.

The start performance for sentence null is the only metric that shows no significant dif-
ference between learning from ordered sentence classes and reshuffled data (among all sig-
nificance tests; R2 = 0.0001, p < .0879). This is expected, as all sentence binary classifications
begin with a consistent initial performance of 0.50 (random guessing for binary classifica-
tion), which remains unchanged even with randomly reshuffled sentence data. In contrast,
the start performance significantly differs for ordered gesture classes versus reshuffled data
because the various gesture pairs contain different levels of spatial information (R2 = 0.0824,
p < .0001), affecting their initial performance.

Max performance
Curiously, if one only investigated maximum performance across training, these classification
tasks could be regarded as relatively similar in their behavior. As shown in Fig 7, both sen-
tence and gesture datasets yield a classification performance that is high, between 0.75 and
1.0 depending on the classification. In the gesture dataset, there are more “difficult” classifica-
tions, shown by outliers inmax performance across training. This can be helpful in diagnos-
ing representational challenges in the network’s training, marking what pairs of training items
may be more difficult to distinguish than others.

Again, as with the start measure, themax performance shows greater variance associ-
ated with classifications in the gesture case (R2 = 0.8250, p < .0001) than the sentence case
(R2 = 0.2736, p < .0001). The difference between these two datasets is not as pronounced as
in the start measure, as a linear model shows that only 2.11% (p < .0001) of the variance is
associated with the dataset in a linear model predictingmax performance observed within a
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Fig 7.Max performance for pairwise classifications. Both sentence and gesture tasks show an increase inmax performance over training epochs. On average this
asymptotes near perfect performance but can vary depending on binary classification.

https://doi.org/10.1371/journal.pcbi.1012286.g007

trial. Despite the small value, it is nevertheless significant and driven by the relatively higher
performance in the sentence task.

Themax performance also differs for both sentence (R2 = 0.0042, p < .0001) and gesture
tasks (R2 = 0.0722, p < .0001) when the network learns from ordered datasets compared to
randomly shuffled ones. The sentence conditions appear to pick up more spurious signals,
ultimately approaching 1.00 as the epochs increase, while the gesture condition remains
consistently unlearned across epochs. The learning pattern for tmax across epochs (see next
section) provides additional insights into these trends.

Time at max
We would expect that completed training in the LSTM should show that maximum perfor-
mance should appear near the end of an item, as this would suggest that the network has
extracted useful information in the whole presentation. Indeed, this is indicated by lower
time-at-max values earlier in the training. During the first few epochs, the maximum value
occurs proportionally earlier in a training item, similar to the example shown above in Fig 5.
However in both sentence and gesture datasets, networks slowly extract features across the
stimulus items for classification, as shown in Fig 8. The time gradually rises for all classifica-
tions, though it can also vary widely and tends to be more irregular in gesture.

In a linear model predicting tmax from data source, sentence and gesture are only slightly
different, with 0.34% (p < .0001) of the variance accounted for. Classifications in sentence and
gesture both relate significantly in a linear model predicting time at max, with sentence clas-
sifications accounting for 9.51% (p < .0001) of the variance and gesture classifications 24.95%
(p < .0001).

Interpreting tmax alongsidemax, we confirm that the learning experience of a language task
is more reliant on spurious signals for reshuffled data compared to ordered data, as max con-
tinuously increases to reach 1.00 while tmax remains sporadic. The gesture condition remains
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Fig 8. Time at max (tmax) for pairwise classifications. Both sentence and gesture tasks show an increase in the proportion of time at which maximum per-
formance is observed. Indicative of information gain, this rises in both – suggesting the LSTM comes to better integrate the full test items for its performance.
However this is much more orderly in the sentence task than the gesture task.

https://doi.org/10.1371/journal.pcbi.1012286.g008

consistently unlearned across epochs for reshuffled data, as themax performance can occur
at any point along the processing trajectory (any timestep). Both tmax values indicate that no
meaningful delayed signals were developed when the network was trained on superimposed
reshuffled data. The time at max differs significantly for reshuffled versus ordered data in both
sentence (R2 = 0.0120, p < .0001) and gesture (R2 = 0.0058, p < .0001) conditions.

End - start performance
Finally, we wish to get a sense of how the LSTMmodels are extracting information within
an information processing session. One way to do this is to discern how much higher its
performance is at the end of a session compared to its performance initially. This is where we
see the greatest difference between the datasets. As shown as Fig 9, sentence shows substan-
tial information gain across stimulus items. By the end of training, the start and end of trials
involves considerable difference, and the positive value of this difference shows that the net-
work improves its performance significantly across presentations. With gesture, the situation
is quite distinct. In most classifications, there is indeed a rise. But because gesture is informa-
tive even at the first time bin of an item, there isn’t much information gain remaining. Indeed
even the highest instances of this value hover near 0.10. Therefore, while performance on ges-
ture is higher at first, the network may find the task more difficult in integrating that spatial
information over time to improve performance.

As in the start measure, the difference between datasets is quite large. When data source
is used to predict the end - start measure, 39.23% (p < .0001) of the observed variance in this
measure can be associated with data source, with sentence associated with much higher infor-
mation gain than gesture results. When looking at each data source separately, only 13.01%
(p < .0001) of the measure is associated with the classification pairs in sentence. In the gesture
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Fig 9. End - start performance for pairwise classifications.The information gain from start to end of stimulus item shows a stark difference between datasets.
The sentence task shows that the LSTM’s performance rises as it integrates data from start to end. With gestures, the story is more complicated, showing less
improvement overall, and in one classification task, it is almost entirely unlearned.

https://doi.org/10.1371/journal.pcbi.1012286.g009

dataset, this association is 38.08% (p < .0001), showing much higher contribution of the class
differences in gesture.

Both sentence’s (R2 = 0.0027, p < .0001) and gesture’s (R2 = 0.0340, p < .0001) end-start
values differ significantly between ordered and reshuffled data. Consistent withmax perfor-
mance gradually reaching 1.00, the information gain of the sentence network increases incre-
mentally from 0.00 to 0.50 when trained on reshuffled data. Combined with insights from
tmax, we suggest that although learning may appear to occur even with reshuffled data, it is
likely driven by spurious signals picked up during the processing session. Additionally, the
end-start performance for gesture gradually improved from highly negative to slightly neg-
ative but was not able to reach 0.00 during the early epochs (e.g. epochs smaller than 50),
which explains the flatmax performance for the reshuffled gesture condition.

Discussion
Recognizing the importance and challenges involved in systematically unpacking the inter-
nal representations of DNNs, this study introduced a multi-dimensional quantification and
visualization approach, “learning curves,” which can capture two temporal dimensions of a
model learning experience. First, it captures the “information processing trajectory,” how the
network is doing as it processes test items. Second, it captures the “developmental trajectory,”
describing how this processing is changing over training epochs. The former represents the
influence of incoming signals on an agent’s decision-making, which is operationalized by the
timestep within a single epoch of an RNN.The latter conceptualizes the gradual improvement
in an agent’s decision-making abilities throughout its lifespan, operationalized by the itera-
tion of epochs. The learning curve approach we illustrate in our two datasets shows that we
can quantify and qualitatively investigate both of these dynamics within the same analysis,
utilizing four descriptive metrics: start, end - start,max, tmax.
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Based on a series of significant tests (see Table 2), we first demonstrated that there is a
data source difference between sentence and gesture classification in the overall learning pat-
terns across all four metrics (all p’s < .0001). Additionally, the learning experiences of both
datasets’ ordered classifications are distinct from their respective reshuffled null baselines,
except for the start of the sentence classification. This is because both ordered (aggregated
across all classes) and unordered binary sentence classifications will have an initial classifi-
cation performance of 0.50 due to random guessing. This is corroborated by the significant
test of the start metric for sentence class and gesture class: sentence pairwise classifications
show very minor differences, with R-squared 0.10 (p < .0001), whereas gesture classes show
much greater divergence, with R-squared above 0.90 (p < .0001), due to the initial spatial
information contained in gesture coordinates, even at timestep 0, as mentioned in the previ-
ous results section. The significant difference between the reshuffled null baseline for ordered
vs. unordered gesture classification is also due to different gesture class pairs having differ-
ent prior spatial information, deviating from the 0.50 random guess scenario observed in
sentence classification.

The modality distinction is further evident in the end - start metric (where sentence clas-
sification shows a much larger information gain than gesture classification, with gesture’s
information gain is more gradual). Finally, the ANOVA test capturing the R-squared dif-
ference between epoch × class versus epoch-only indicates significant distinctions between
pairwise classes and not being distinguished by class (all p’s < .0001). This reveals that within
the same multiclassification task, certain classes can be more difficult or easier to separate.
Taken together, based on the analysis of these four measures derived from the learning curves
across two distinct datasets, we highlight three insights gained from mapping these curves:
non-monotonicity, pairwise comparisons, and domain distinctions.

Non-monotonicity
First, we observed a non-monotonic trend in the learning experiences of DNNs. In other
words, learning does not always show an increasing monotonic improvement because net-
works sometimes reveal temporary decrements in their performance across training. This is
a characteristic recognized in previous literature as a key advantage for their advancement
in addressing the most challenging tasks. For example, in applying neural network models
to language, the presence of non-monotonic learning was taken as evidence that networks
“reorganize” their knowledge as they learn. This may mean networks are acquiring more effi-
cient representations of a problem space and the drop in performance is indicative of a tran-
sition into that more efficient representation. Classically, in the case of models learning lan-
guage, they show a decrement in performance when they “discover a rule” in grammars [68]
Our results are a testament to the observation that both representational consolidation and
“catastrophic forgetting” remain as important issues in DNN learning [69].

Specifically in our results, we found that RNNs exhibit different preferences for early ver-
sus late cues when addressing various sequential tasks. For instance, in the sentence task, we
noted a more pronounced performance improvement occurring in the later stages of informa-
tion processing (i.e., model development). In contrast, gesture learning tends to show quicker
progress, with more variability across epochs and repetitions of simulations, suggesting that
DNNs tend to rely on shortcuts, such as naive cues related to keypoint coordinates, for ges-
ture classification, rather than focusing on high-level movement sequences. This shortcut-
based “learning” also is evident in the higher initial performance (start) for gesture classifica-
tion (> 0.75). On the other hand, sentence classification begins at around 0.50 (the at-chance
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probability) and exhibits greater performance gains in later epochs, indicating that the models
classify based on high-level semantic sequences.

Pairwise comparisons
Additionally, although multiclassification tends to exhibit collective model performance, our
between-class pairwise comparisons reveal the presence of outliers within multiclassification.
For example, “joy/fear”, “surprise/fear”, and “sadness/fear” demonstrate higher information
gains across epochs compared to other emotion pairs, suggesting that these classes are further
apart from each other. The “body/head” classification appears to experience learning chal-
lenges, possibly because these two movements have difficulty being completely separated, as
the head’s movement in naturalistic data may inevitably coincide with that of the body due to
joint coordination.

The combination of learning curve mapping and instance measures thus serves as an effec-
tive approach for “auditing” representations in multiclassification problems. The proposed
pipeline improves model explainability beyond holistic evaluation of classification perfor-
mance and ad-hoc attention visualization by unpacking pairwise class learning patterns to
reveal any pairs that are unsuccessful in being discriminated or involve delayed knowledge
gain. This granular examination allows modelers to better investigate a model’s appropriate-
ness for the underlying task, as well as the properties of the processed input signals, reaffirm-
ing the value of our learning curve conceptualization.

Domain distinctions
With these findings, it is tempting to infer that there are domain distinctions among different
modality classification tasks. Gesture learning, for instance, may rely on autocorrelated sig-
nals (as body movements result from the coordinated contraction and relaxation of muscles),
potentially emphasizing spatial semantics as early cues 3, while language learning relies on
higher degrees of surprisal, irregularities and arbitrariness, as suggested by previous literature
(see [43–46]). These domain distinctions are valuable to cognitive science in understanding
how humans process and distinguish between various modes of communication, shedding
light on the neural mechanisms underlying the flexibility and adaptability of the human mind
when processing different forms of information and communication modalities.

Though it is intuitive and tempting to explain these domain distinctions here, we cannot
yet assert that these trends would hold for all sentence or gesture (keypoint) classification
tasks, only the ones we investigate here. However the learning curve results would seem to
align with an intuition of how linguistic symbols would be sequentially integrated into a neu-
ral network in contrast to the highly auto-correlated spatial information contained in ges-
ture performance. Still, we cannot infer a broad generalization about “language vs. gesture”
and only leave it as a potential path for future investigation. Indeed, this may be an addi-
tional benefit of a method like the one we present here. Learning curves could finely ascertain
these domain distinctions, and expanding the set of data to test may permit generalization in
future work. This may have theoretical implications itself. The learning curve analysis may
provide information about the distinct sources of information from varied modalities. When
neural models (or human brains, presumably) integrate distinctive sources of information,

3 The spatial information arising from the gesture, specifically the keypoint coordinates in the gesture dataset,
can vaguely help the model distinguish between gesture classes (e.g., hand vs. no gesture). However, this informa-
tion remains a low-level cue, as the model lacks an understanding of what a complete hand gesture sequence or a
no-gesture sequence looks like.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012286 February 10, 2025 20/ 26

https://doi.org/10.1371/journal.pcbi.1012286


i
i

“pcbi.1012286” — 2025/2/17 — 17:18 — page 21 — #21 i
i

i
i

i
i

PLOS COMPUTATIONAL BIOLOGY Mapping the learning curves of deep learning networks

they may strengthen understanding of complex multimodal data by leveraging their unique
information-processing and developmental benefits.

Limitations
This study provides conceptual and operational illustrations of applying learning curve meth-
ods to RNNs, though both the illustration and the proposed method come with certain con-
siderations. First, we selected two distinct datasets to demonstrate how learning curves offer
insights into different data and modality learning experiences. While illustrating significant
domain distinctions, our study is limited in making broad generalizations between “language
vs. behavioral.” Future cognitive and behavioral research interested in such conceptual gen-
eralization can apply our proposed method to various distinct language tasks (e.g., language
translation) and behavioral datasets (e.g., facial expression detection) to achieve broader gen-
eralizations across different modalities. Additionally, as highlighted at the beginning, our
method could have implications for multimodal DNNmodeling, given that our simulations
utilize datasets with distinct modalities. For the current scope, we focus on how our pro-
posed method facilitates the understanding of distinguishable modalities as an initial step,
while future work can explore adopting this method for multimodal DNNs and datasets (e.g.,
audiovisual emotion classification) to assess how multimodal learning differs from unimodal
learning.

From a methodological standpoint, as detailed in the model explainability technique com-
parison (Table 1), our proposed method is currently limited to temporal tasks and DNN
architectures, specifically RNNs. However, it has the potential to be relatively easily adapted
to various tasks, modalities, multiclassification, and different performance measures, beyond
the binary classification used in this study. We have provided illustrations of the multiclassi-
fication learning curve based on sentence classification in S2 Text. Additionally, because our
method generates measures at every timestep and epoch, it may be more computationally
expensive compared to other explainability methods. However, this arises from the tradeoff
between obtaining a more granular measure across all training steps versus only obtaining
snapshot visualizations of a single neural network layer or attribution scores for all input fea-
tures. As documented in the DNN explainability comparison (Table 1), each technique has its
strengths and considerations, and researchers can exercise discretion in choosing the appro-
priate method. The learning curve method excels in providing a more systematic understand-
ing of the model’s learning process across models and modalities.

Conclusion
There is a long tradition in cognitive science and computational neuroscience of examining
the internal representations of models [9–12]. One reason for this is to determine if a model’s
features or processes reflect processes of the human mind. Such models can be informative
for inferring properties of human mental processing, and so have direct theoretical implica-
tions. For example, Elman [13] and others [14] showed that RNNs can learn patterns suffi-
ciently complex to resemble human grammar. By examining the internal activations of these
recurrent networks, they showed that these systems are driven by graded, statistical features.
Words are not discrete “symbols” but scalar vectors conditioned by linguistic context in time
[15]. This was taken to challenge theories that see language as a purely abstract and symbolic
recursive process [16].

Inspired by prior work, the learning curve method we proposed uses temporal mapping
(information processing and developmental trajectories) to help modelers more comprehen-
sively understand the underlying learning and decision-making processes of a complex model
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architecture without delving into the intricacies of interpreting its internal representations
directly [23,38]. This kind of systematic and quantitative approach has recently gained popu-
larity in both computational cognitive science and deep learning communities [5,38,63–65],
as it facilitates multidimensional comparisons across models and modalities, which were pre-
viously seen as challenging for DNN-like models. The current study illustrates multiple tech-
niques for analyzing model learning experiences and highlights three insights across different
communication modalities based on these analyses. Future studies can utilize this learning
curve mapping approach to enhance model interpretability studies by evaluating a model’s
appropriateness for the task at hand, examining the properties of the underlying input signals,
and assessing the model’s alignment (or lack thereof) with human learning experiences, which
is also a critical consideration for computational cognitive science and neuroscience research.
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