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We introduce symbolic dynamics to cognitive scientists with the aim of
furthering constructive debate on representation. Symbolic dynamics is a
mathematical framework in which both continuous and discrete states of
a system can be considered jointly. We discuss a number of theoretical
implications this framework has for cognitive science, and offer some
consideration of the way in which it might be employed for comparing
or conciliating discrete and continuous representational theories.
Symbolic dynamics may thus serve as a common, level playing field for
debate in theories of cognitive representation.
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1. Introduction

Since its inception, cognitive science has offered up a wide array of hypothetical

constructs, intervening somewhere between our sensors and our effectors, to explain

our observable behaviour. Many of these constructs can be filed under the umbrella

term ‘representation’. Representations might ‘stand for’ things in the world (Bloom

and Markson 1998), be asymmetrically dependent with worldly objects (Fodor

1987), they might get stored or processed or recalled (Atkinson and Shiffrin 1968),

and they surely change somehow during development and learning (Danovitch and

Keil 2004). This generic construct has appeared and reappeared in a variety of forms,

labelled variously with the terms ‘traces’ (e.g. Rosen 1975), ‘schemata’ (e.g. Bartlett

1932, Neisser 1976), ‘categories’ (e.g. Rosch 1975), ‘concepts’ (e.g. Medin 1989),

‘object files’ (e.g. Feigenson and Carey 2003), and so on—perhaps describable as

different forms of representation.
There is no single agreed upon theory or definition of representation among

cognitive scientists (Dietrich and Markman 2003). The details about any particular
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brand of representation are mostly specific to the theory in which it plays a role—but
each brand can be characterized in terms of some basic features. Nonetheless, even
these most fundamental properties of representation are the subject of continuing
debate in cognitive science. One such property concerns the temporal and spatial
extent of representational states. There are two basic sides to the traditional version
of this debate. One family of theories may be described as ‘discrete-symbolic’,
because they claim that internal representational states involve discrete computa-
tional information structures that are manipulated in logical algorithmic processes.
Here, ‘computational’ can be understood intuitively as structures that take the form
of something a digital computer would process—content that is discrete in space and
time. A competing family of theories may be described as ‘continuous-distributed’,
because they instead invoke representational states that are spread out in space,
and extended in time. These states are graded, statistical and probabilistic—they
cannot be individuated discretely in time, or uniquely in their informational
content. Continuous-distributed representations contain probabilistic informational
patterns that might blend into other such representations, whereas discrete-symbolic
representations are by definition independent uniquely identifiable states that are
each separate from, yet used in conjunction with, other discrete representations
(Dietrich and Markman 2003).

Debate continues about which composition is the most appropriate foundation for
cognitive explanation. Recently, Dietrich and Markman (2003, Markman and
Dietrich 2000) have offered persuasive arguments about the crucial role of symbolic
representation in higher-order cognition, such as conceptual organization, problem
solving, and language (see also Pinker 1997, Marcus 2001). Meanwhile, Spivey and
Dale (2004) argue that a continuous composition is extensively evidenced through-
out even complex cognition, offering examples from real-time language processing
and visual cognition (see also Port and Van Gelder 1995, Elman et al. 1996). In this
article, we provide a review and discussion of a mathematical terrain in which these
two representational formats can be directly compared and evaluated. We suggest
that a kind of ‘mathematization’ of the problem space, in terms of nonlinear
dynamical systems and symbolic dynamics, can aid in a variety of ways. The des-
criptive power of dynamical systems, and the computational power of symbolic
dynamics based on them, can reveal an epistemological synthesis of this debate,
and offer an illuminating framework for exploring such conceptual conciliation.
For reasons that we describe later, we do not expect the framework of symbolic
dynamics to make moot the debate between discrete and continuous descriptions of
mental activity, but rather may pose as the level playing field on which the debate
may actually achieve a consensual resolution.

A case may be made for mathematization of scientific domains as a course toward
resolving theoretical disputes, clarifying conceptual confusions, and making poten-
tial decisions concerning the greater validity of one verbalized scientific description
over another (e.g. for a discussion of this in psychology, see Meehl 1998). What early
calculus did for Newtonian mechanics, tensor calculus for general relativity,
symbolic logic for computer science, among other possible examples, is to provide
a formal framework for exploring the relationships among observables, thereby
making explicit predictions that can be tested empirically. A common mathematical
framework, within which different theories compete, permits more rigorous evalua-
tion of hypotheses that otherwise would be couched merely in a verbalized form.
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For example, despite the growing popularity of quantitative models, it is not difficult
to find theories in cognitive psychology whose existence enjoys only verbal
description. This certainly does not invalidate the potential contribution of these
theories – observers should always be reminded of the youth of cognitive science.
The bigger problem is that multiple competing theories in verbal form may be
conducive to debate with little chance of resolution. For one thing, without a
common formal framework, it may be difficult to tell if two competing theoretical
schemes are in fact mutually exclusive, or perhaps even extensionally equivalent.
In other words, without explicit formulation of the relationship among theoretical
entities, in more or less formal terms, it may be difficult to determine whether two
competing entities are two distinct incommensurable accounts, two different
aspects of one process, or merely two different descriptions of the same process.
Secondly, theorists of differing persuasions may be talking past one another,
preventing a Hegelian ‘thesis–antithesis–synthesis’ resolution that may be revealed
by a common framework permitting conciliation of competing notions.

There are pursuits in cognitive science that benefit from aspects of formalization
at present. For example, connectionist models have been used as a common
information-processing framework for evaluating competing theoretical accounts
of cognitive processes involved in language. McRae et al. (1998) used a localist
attractor network to compare directly the immediate information-integration
predictions from the constraint-based theory of sentence processing (MacDonald
et al. 1994) to the architecturally delayed integration predictions from the Garden-
Path theory (Frazier 1995). Drawing from work by Elman (1990) and Schütze
(1994), Spivey-Knowlton and Saffran (1995) used a connectionist-like framework
to directly compare the advantages of incremental prediction and explicit negative
evidence in learning a simple language structure. Also, particularly relevant to
our concerns here, homogeneous versus hybrid simulations using connectionist
principles have recently been developed to compare dual- vs. single-route models
of reading (Harm and Seidenberg 1999, Coltheart et al. 2001). Other formal
frameworks, such as Bayesian modelling (Tenenbaum and Griffiths 2001), genetic
algorithms (Chater et al. 2004), and statistical models of sentence processing
(Chater and Redington 1996) have been manipulated in ways that allow comparison
of competing theories.

The overarching theoretical concern, however, is that many of these models
involve too many degrees of freedom to make them a sufficiently agreed-upon
common ground for comparing theoretical constructs whose properties are highly
disparate. Comparing individual models of particular processes is surely valuable
and inevitable, yet fundamental theoretical differences in cognitive science cannot
be contacted through manipulating already-existing architectures.y The debate
over representation is particularly illustrative in this respect. Those who propose

yThis is not to say that theoretical debate cannot proceed by comparing distinct architectures and their

ability to capture the data – because this is already an area of productive debate in cognitive science

(e.g. Roberts and Pashler 2000, Pitt et al. 2002). We are instead recommending the use of a single formal

framework that permits comparison of different theoretical constructs that could exist within that

framework. The relative contribution of these different constructs for fitting experimental data, within

the same set of agreed mathematical or formal principles, would then adjudicate between the competing

theories.
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symbolic rules and representations have often urged core qualitative differences
between these kinds of states and the probabilistic distributed states that are
the hallmark of statistical models, such as connectionist simulations. For this
reason, choosing a formalization that has a pre-existing affiliation with a particular
theoretical framework, such as a production system or a connectionist model, biases
the enterprise toward the theory from which the model originated. A common
ground should instead derive from a formalization that can already adequately
incorporate and implement both sides of the theoretical debate. A mathematization
or formalization of the debate over representation needs a common framework
for directly comparing symbolic states and dynamic processes within the same
explanatory arena.

In this article, we propose that a branch of dynamical systems theory may serve as
this common ground. Symbolic dynamics has both complemented understanding of
the continuous-time nature of systems and provided groundbreaking insight into the
computational power inherent in dynamical systems (e.g. Crutchfield 1994). A few
proposals concerning symbolic dynamics have already been offered from contribu-
tors outside of cognitive science. Below we introduce symbolic dynamics for the
cognitive scientist, and review some of these proposals. Before describing this
framework, we first offer discussion supporting the position that some portion of
our perceptual/cognitive processes is already awash in continuity: that the best
physical description of the mind/brain must invariably invoke, at some level,
continuous (or discretely-approximated continuous) bases for understanding the
substrate of cognition. A theory of cognition is superimposed on this continuity in
two broad ways historically: discrete-symbolic or continuous-distributed representa-
tional states and processes as the theoretical basis for cognitive explanation. We then
introduce symbolic dynamics as a framework that can incorporate (and, in certain
special cases, show the equivalence of) both kinds of explanation. We finally offer
our own consideration of symbolic dynamics, with its potential contribution to and
limitations in cognitive science.

2. Continuity

A key point Dietrich and Markman (2003) use to support discrete representations is
our cognitive system’s ability to form categories for objects in our world: ‘If a system
categorizes environmental inputs then it has discrete representations’ (2003: 101).
Moreover, they argue, continuous accounts of categorization would miss the mark,
since categorization by definition involves consistent responses to completely
distinct elements in our environment—it makes no room for continuity (historically
this may be arguable; cf. Rips et al. 1973, Rosch 1975). Although Dietrich and
Markman offer extensive discussion to forestall possible replies, there remains a
problem with this perspective. What the authors dub ‘enduring classes of sameness’
(2003: 101), in an environment that our system must categorize, involve discrete
internal representations whose primary evidence comes from what might be called
time-course irrelevant responses during a cognitive task. An outcome-based response
measure, such as a forced-choice categorization task, is time-course irrelevant
because the temporal dynamics of representational activations leading up to the
forced choice go undetected by the response measure. Such response measures
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may artificially exaggerate the degree to which the enduring classes exhibit their
sameness. For example, even the cognitive literature’s darling of discrete mental
events, categorical speech perception (e.g. Harnad 1987, Liberman et al. 1957),
exhibits some graded sensitivity to continuous phonetic feature information when its
temporal dynamics is measured with reaction times and eye movements (Pisoni and
Tash 1974, McMurray et al. 2003; see section 2.2 below). In this article, we consider
two realms, visual cognition and language comprehension, in which an unmistakable
continuity is observed even in seemingly discrete, categorical tasks (see Spivey and
Dale 2004 for further review).

2.1. Vision

Vision research is replete with examples of continuity in real-time perception. The
gradual settling of a population code of neurons, over the course of hundreds of
milliseconds, is a typical way to think about how the visual system recognizes objects
and faces. Compelling visualizations of the continuous manner in which sensory
input gradually produces a percept can easily be found in visual neuroscience.
We briefly consider three cases: object and face recognition, visual search, and
perceptual decisions.

Rolls and Tovee (1995) recorded from neurons in macaque inferotemporal cortex,
and found that it takes a few hundred milliseconds for a responsive population of
cells to achieve their appropriate firing rates indicating full identification of a fixated
object or face. The cumulative information (in bits) provided by an inferotemporal
neuron in the service of recognizing a face or object accrues continuously (though
nonlinearly) over the course of about 350 milliseconds until asymptote. Perrett et al.
(1998) demonstrate similar patterns of gradual accumulation of neuronal evidence
during face recognition. When an object or face is partly rotated away from the
frontal view, recognition or matching will generally take longer as a function of how
far it is rotated (e.g. Shepard and Metzler 1971, Cooper and Shepard 1973, Jolicoeur
1985; see also Georgopoulos et al. 1989). Perrett et al. (1998) describe recordings
from cells in the monkey temporal cortex during viewing of frontal, three-quarter
profile, profile and quarter profile schematic faces. When the accumulated action
potentials are plotted over time, these curves gradually rise to asymptote over the
course of several hundred milliseconds, but at different rates as a function of how
canonical the face orientation is.

The same kind of gradual accumulation of perceptual evidence can be observed
when multiple objects are competing for attention during visual search. Although a
serial-processing account has argued that the observer allocates attentional resources
wholly and discretely to individual objects, one at a time (e.g. Treisman and Gelade
1980, Treisman 1988; see also Wolfe 1992), a parallel-processing account is being
developed in which attention is best characterized as involving partially active
representations of objects simultaneously competing for probabilistic mappings
onto motor output (e.g. Desimone and Duncan 1995, Reynolds and Desimone
2001). In fact, a wide range of studies have been suggesting that the traditional
distinction between putatively ‘serial’ and ‘parallel’ search functions is best revised as
a continuum of search efficiency rather than two separate mechanisms of visual
search (Duncan and Humphreys 1989, Nakayama and Joseph 1998, Wolfe 1998,
Olds et al. 2000; see also Spivey et al. 2001).
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Finally, Gold and Shadlen (2000) examined decision processes in macaque visual
perception. A common task in visual psychophysics involves presenting a display of
quasi-randomly moving dots. As the experimenter increases the proportion of dots
that move in a roughly consistent direction, the perception of a coherent direction of
flow amidst the dots becomes more apparent (Britten et al. 1992). Monkeys were
trained to indicate the perceived direction of dot flow, upon offset of the stimulus,
by making an eye movement to one peripheral location or an opposite one. After
identifying a relevant frontal-eye field (FEF) region, electrical microstimulation
evoked an involuntary saccade that was perpendicular to the two voluntary response
saccades. On some of the direction-of-flow judgment trials, this region was
microstimulated immediately after the moving dot display disappeared, i.e. exactly
when the monkey was supposed to produce a voluntary eye movement that
would indicate his response regarding the perceived direction of flow of the dots.
By incrementally increasing viewing time of the stimulus before this microstimula-
tion, the experimenters were able to observe the gradual increase in ‘strength’ or
‘confidence’ of the perceptual decision over time, as indicated by the degree to which
that voluntary saccade ‘leaked into’ the execution of FEF-microstimulated evoked
saccade. Thus, the population of FEF cells that produced the evoked saccade was
already somewhere in the process of settling toward a pattern of activation that
would produce the voluntary response saccade. If the microstimulation took place
early on in this decision process, rather little effect of the voluntary response would
be apparent in the direction of the evoked saccade, but if the miscrostimulation took
place later on in the decision process, a significant amount of the voluntary response
would be apparent in the direction of the evoked saccade. This finding suggests
that decision processes themselves may be coextensive with the gradual settling of
partially active and competing neural representations in oculomotor areas of cortex
(Schall 2000, Gold and Shadlen 2001; see also Georgopoulos 1995).

2.2. Language

Much like visual perception, language comprehension also exhibits a form of
temporal dynamics that reveals underlying continuous-distributed formats of
representation. There is considerable evidence that the multiple levels of linguistic
complexity—comprehension of speech sounds, words and sentences—are driven by
graded, partially active representations. At the level of speech sounds, the phenom-
enon of categorical perception was long adduced as evidence for discrete representa-
tional states (Liberman 1982). Lately it has been subject to extensive empirical
investigation, and made consistent with more temporally dynamic approaches to
categorization (Damper and Harnad 2000; see also Anderson et al. 1977). For
example, McMurray and Spivey (1999) tracked participants’ eye movements while
they performed the standard categorical identification task. This task involves
categorizing sounds that lie on a voice-onset-time continuum between ‘bah’ and
‘pah’, by clicking a relevant icon on one or the other side of the computer screen.
Thus, in addition to recording the participants’ explicit choice, there was also a semi-
continuous record of how the eyes tended toward one or the other response icon
during categorization. With ‘pah’ or ‘bah’ sounds near the categorical boundary,
eye movements exhibited conspicuous vacillation between categories before the overt
mouse-click response was made. Despite the apparent categorical nature of the
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eventual choice, eye movements revealed a more continuous decision process
that is sensitive to some of the graded acoustic–phonetic variation in the stimulus.
These temporary phonemic ambiguities exhibit their effects not just in phoneme
categorization tasks but also in spoken word recognition tasks (McMurray et al.
2002, 2003).

At the level of word recognition, Spivey-Knowlton et al. (1994) demonstrated
cohort effects in eye-movement patterns by having subjects follow instructions to
manipulate real objects on a table. Participants sat in front of a table containing
a central fixation cross and various objects around it (e.g. a fork, a mug, a candle).
In some trials, objects whose names had similar initial phonemes were present on the
table, available for manipulation (e.g. a bag of candy and a candle). Even before the
spoken word was completed, eye-movements to both objects were often observed,
such as briefly fixating the candle when instructed to ‘Pick up the candy’. This
phonologically similar object conspicuously attracting eye movements is indicative
of the competing lexical representation being partially active during, and perhaps
shortly after, delivery of the spoken word. Headband-mounted eye-tracking studies
like this have demonstrated this real-time lexical competition using computer-
displayed objects (Allopenna et al. 1998), using artificial lexicons (Magnuson et al.
2003), with young children (Fernald et al. 2001), and even across two languages in
bilingual participants (Spivey and Marian 1999, Marian and Spivey 2003).

Finally, in sentence processing, eye movements can again reveal the continuous
intake and use of information during comprehension of a spoken utterance.
For example, when presented with a real 3D display containing an apple on a
towel, another towel and an empty box, and then instructed to ‘Put the apple on the
towel in the box’, participants often look briefly at the irrelevant lone towel near the
end of the spoken instruction before returning their gaze to the apple, grasping it and
then placing it inside the box (Tanenhaus et al. 1995, Spivey et al. 2002). In this case,
the syntax is ambiguous as to whether the prepositional phrase ‘on the towel’
is attached to the verb ‘put’ (as a movement destination) or to the noun ‘apple’ (as
a modifier). Given the actions afforded by the display, the latter syntactic structure
is the correct one. However, the brief fixation of the irrelevant lone towel indicates
a temporary partially activated incorrect parse of the sentence. To demonstrate the
influence of visual context on this syntactic ambiguity resolution process, the display
was slightly altered to include a second apple (resting on a napkin). In this case, the
visual co-presence (in Herb Clark’s (1992) terms) of the two potential referents for
the phrase ‘the apple’ should encourage the listener to interpret the ambiguous
prepositional phrase ‘on the towel’ as a modifier (in order to determine which apple
is being referred to) rather than as a movement destination (cf. Crain and Steedman
1985, Altmann and Steedman 1988, Spivey and Tanenhaus 1998). Indeed, with this
two-referent display, participants rarely fixated the irrelevant lone towel, indicating
that visual context had exerted an immediate influence on the incremental syntactic
parsing of the spoken sentence (Tanenhaus et al. 1995, Spivey et al. 2002; see also
Knoeferle et al. 2003).

The current state of affairs in the field of sentence processing is at a consensus with
regard to the continuity of information flow, and has been gradually approaching
consensus with regard to the rapid integration of syntax, semantics and pragmatic
context (Trueswell and Tanenhaus 2004). Just as the processing of speech sounds, at
the scale of tens of milliseconds, appears to be characterized by multiple partially
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active phonemic representations competing over time (McMurray et al. 2002, 2003),
and the comprehension of spoken words, at the scale of hundreds of milliseconds,
appears to be characterized by multiple partially active lexical representations
competing over time (McClelland and Elman 1986, Marslen-Wilson 1987, Allopenna
et al. 1998), so does the resolution of syntactic ambiguity, at the scale of seconds,
appear to be characterized by multiple partially active syntactic representations
competing over time (MacDonald et al. 1994, Stevenson 1994, Spivey and
Tanenhaus 1998, Tabor and Tanenhaus 1999).

2.3. Summary

From perception, such as visual processing, to cognition, such as the various levels of
linguistic processing, there seems to be extensive evidence for continuous-distributed
representation (see Spivey and Dale 2004, for further discussion and examples).
There nevertheless remains considerable debate about the nature of representation
in other areas of cognition. In particular, in ‘high-level’ cognitive processes such
as reasoning and problem solving, there seems to be markedly slower success with
continuous-distributed frameworks. This situation is exacerbated further by the
comparatively rapid rise, and longer history, of discrete-symbolic accounts of
reasoning and problem solving (e.g. Weizenbaum 1966, Winograd 1970, Newell
and Simon 1976).

If it can be granted that perception is largely driven by continuous change in
processing states, then for the discrete-symbolic perspective to be right about
cognition, there must be a ‘discretization’ that happens somewhere in between
perception and motor output. The debate can then be placed in the following
terms: how early in the system do our theories need to postulate this discretization, thus
invoking a language of discrete symbols generated through causal influences of
continuous processes? A purely continuous-distributed account of cognition might
place this discretization at the extreme end, only in between the motor action itself
and its effects on the problem-solving environment. For example, although you
may be trying to decide between moving your rook four squares up or three squares
up in a game of chess, and this vacillation may even be visible in the continuous
motor movement, in the end, only one of those alternatives actually happens.
In contrast, the discrete-symbolic account of cognition urges an earlier discretiza-
tion, recommending theories to work with symbolic states and algorithmic state-
transition rules not long after perceptual processing. In such a case, the decision to
move one’s rook three squares or four squares would be discretely made in an
internal cognitive stage, and any vacillation observed in the motor movement would
be best interpreted as a vestigial or epiphenomenal echo of the earlier temporary
cognitive uncertainty.

If this formulation of the question is agreeable to both sides of the debate, then
there exists a ‘common format of explication’ that future research in high-level
cognition might fruitfully use in order to consensually adjudicate between theories
that propose an internal discretization of the brain’s continuous dynamics and
theories that propose only an external discretization of them. The mathematical
arena of symbolic dynamics (e.g. Crutchfield 1994, Devaney 2003, Goertzel 1998,
Shalizi and Albers submitted; see also Cleeremans et al. 1989, Tabor 2002, for related
discussions) has exactly the ingredients for building systems that implement
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continuous temporal dynamics in a high-dimensional state space (of perception and
of action) and can convert that continuous trajectory into an emitted string of formal
logical symbols for describing external action-effects in a problem-solving environ-
ment, and also for describing internal cognitive states.y We next offer a very simple
introduction to symbolic dynamics, and then discuss a number of issues relevant to
its application in cognitive science.

3. Symbolic dynamics

A continuous-distributed perspective on representation in perceptual and cognitive
processes is often couched in model systems that change in time (be it continuous-
time or discrete-time): dynamical systems. A dynamical systems framework provides
a rich set of conceptual tools for cognitive science. The geometric entities in the study
of dynamical systems can serve as an intuitive, and potentially mathematically
rigorous, vocabulary for visualizing state changes within and between perception
and cognition. As already mentioned, this strategy is widely used in many areas of
cognitive science, and is often considered its own framework for the study of
cognition (Thelen and Smith 1994, Kelso 1995, Port and Van Gelder, 1995, Ward
2002). In order to lay out this descriptive vocabulary, we briefly consider a simple
iterative dynamical system, surely familiar to many readers, that illustrates a number
of these geometric metaphors. Consider a function FðxÞ that maps real numbers
onto real numbers by iteration: F 2ðxÞ is given by FðFðxÞÞ, and F 3ðxÞ by FðFðFðxÞÞÞ,
etc. The logistic map is given by the equation

FðxÞ ¼ �xð1� xÞ

The time dimension is here represented by progressive iteration of the real value x
into the function F, scaled by �. The iterative process in this simple equation
illustrates stability, meta-stability, and transition into chaotic behaviour. For
example, when � is between 0 and about 3.5, iteration of FðxÞ from any starting
point of x will settle into stable attractor states—namely, the value of F nðxÞ, as n
becomes very large, stabilizes on one or more particular precisely-repeated values.
These values are termed attractors in the logistic map’s dynamics. As � approaches
about 3.6 or so, the logistic map exhibits chaotic behaviour, where there is no stable
attractor state, and its series of values can superficially appear random. One way of
representing the transitions in state space of this system is through a phase plot,
shown in figure 1. By tracking the value of x at each iteration, we can visualize the
trajectory of the system from some random initial x into its attractor states (figure 2).

The logistic map is used extensively in textbooks on dynamical systems. Its
curiosity lies in the rich complexity that emerges from iterating such a simple
equation. In fact, the same issues considered for discerning the nature of the logistic
map are a concern for innumerable systems of practical and theoretical interest.
A wide variety of pure and applied mathematical techniques can be used to study

yIn fact, while defending discrete representations in cognition, Dietrich and Markman (2003) essentially

describe the basic concept of symbolic dynamics, without referring to it by name, in their fourth

argument (their discussion of figure 3).
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Figure 1. A phase-plot for the logistic map. Provided � is above 0 and below 4, the system

lies within the interval of [0, 1]. In other words, given its current value of x at time t, its
subsequent iteration, time t þ 1, will be on this line (here with �¼ 3.9).

x0 = 0.65

Fn = 0.56

Fn = 0.76

Figure 2. In this ‘phase flow’ diagram, the logistic map moves into two stable
attractors with �¼ 3.1. The system starts at x0 ¼ 0:65. As the x is iterated through F, it

settles into two attractor states, approximately 0.56 and 0.76, between which it will alternate
indefinitely.
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these systems. Nevertheless, it is not uncommon that these methods can be
outstripped by a system’s complexity. A specific technique available to overcome
such limitations, around for decades and gaining much attention of late, is termed
symbolic dynamics, and offers a means of simplifying analysis (e.g. early on, Morse
and Hedlund 1938; see Devaney 2003 and Williams 2002 for review). A system’s
dynamics can be rendered symbolic by carving partitions or regions into its phase
space, and assigning a unique numeric state or label to that partition. As the
dynamical system’s state changes in time, this trajectory is transformed into a
sequence of emitted symbols corresponding to partitions in the space. Take, for
example, the logistic map. We can represent its phase space as in figure 3, and divide
the plot into two intervals, I0¼ [0, ½] and I1¼ (½, 1]. When iterations of the system
enter the first interval, the symbol ‘0’ is output, and likewise ‘1’ for the second. The
dynamics of the logistic map may therefore be represented by a sequence of 1s and
0s, indicating its approximate position in these partitions at each iteration.

At �¼ 2.9, the system quickly descends onto a particular stable attractor state at
approximately x¼ 0.65. The symbol sequence generated by this system is extremely
simple—‘1111. . .’. The system in fact never leaves this interval, never passing the
threshold into the other, and therefore emits the symbol ‘1’ for any subsequent
iteration once F nðxÞ reaches its attractor. However, when �¼ 3.55, for example, the
map fluctuates for a bit and then reaches eight distinct and perfectly repeated
attractors. Once it reaches this meta-stable state, while tracing the transitions across
intervals I1 and I0, this trajectory generates the sequence ‘011101110. . .’. This may
be simplified using the notation (01110111)n or even (0111)n. Contained in this simple
sequence rule is the original dynamics: transitions between eight separate attractor
states.

I0 I1

10

Figure 3. The phase space of the logistic map can be carved into two intervals. Each time
the system enters the interval, it outputs the symbol corresponding to that region (‘0’ or ‘1’).
Here �¼ 3.9 again.

Notions of cognitive representation 327



The above example is deliberately simplified for the sake of introducing
rudimentary dynamical systems and symbolic dynamics. The logistic map affords
this simplification. The strategy of employing symbolic dynamics, however, is
somewhat more complex in most contexts. Symbolic dynamics rapidly served to
help explore chaotic dynamical systems in more theoretical contexts (see Williams
2002, for a review). In a further simplified example, we can straightforwardly
introduce what this application entails. Consider an alphabet of N symbols that
we might use in our partition of a system’s phase space, A¼ {0, . . . , N�1}, and the
space of all possible sequences constructed from this alphabet:

X

2

¼ fSjS ¼ s0s1s2 . . . , and si 2 Ag

Here, s0 is the first symbol emitted by the dynamical system, and the sequence

continues ad infinitum. The set
P

2 is the space of all such possible sequences.

A particular system’s dynamics can be captured by shifting its infinite sequence,

S 2
P

2, to the left, so that s0s1s2. . .!s1s2s3. . . , and the new sequence begins at the

next emitted symbol, s1. This shift operation captures the progression in time of

emitted symbols, and is often represented by �, so that S 0 ¼ �S, where s0i¼ siþ 1.

This shift operation can act as a mapping on a continuous space, �:
P

2!
P

2, by

specifying a distance measure or metric between sequences, d(S, S0). In other words,

the trajectory of a system can be represented in terms of an ordered set of infinite

symbol sequences, formed by progressive shifting.
From here, a means of exploring dynamical systems involves demonstrating that

the space of symbols
P

2 and its shift map � have a certain geometrical equivalence
to a dynamical system’s own continuous mapping and the set of states which it
visits. The famous Smale horseshoe can be studied through partitions of its phase
space—and through its symbolic dynamics, it can be shown to have particular
dynamical features (e.g. chaos; Medio and Lines 2001). The logistic map has also
been explored through its symbolic dynamics. Consider the case where the control
parameter � in F is larger than 4. It is easy to see that most initial states will have F n

approaching �1 as n gets larger. Specifically, since x¼ 0.5 grants the product
x(1� x) its largest value (0.25), any value for � that is greater than 4 will take F
outside the interval [0, 1], and thus at the next iteration, on a path towards infinity.
However, inspection of the phase plot for the logistic map in figure 4 reveals the
simple observation that not all values of x take F out of [0, 1]. The set C of all values
that avoid this escape, along with the function F, can be shown to have this kind of
equivalence with

P
2 and �, and allow certain conclusions about the properties of

this set: once again, the map F on C is chaotic (Devaney 2003).
These textbook examples of the theoretical and mathematical benefits of symbolic

dynamics merely scratch the surface of its recent role in the study of dynamical
systems. Recent excitement has instead been concerned with the extent to which
symbolic dynamics is informative about more complex systems through statistical
analysis of its output. Symbolic dynamics is thus intriguing because it offers
structures of sequences that can be subjected to a wide variety of ‘tricks for
predicting discrete stochastic processes’ (Shalizi 2004a). Such statistical analysis
has offered insight into complex dynamic processes in a wide variety of fields,
including astronomy, biology, chemistry and computational linguistics (see Daw
et al. 2003 for a review). The past two decades have also seen symbolic dynamics
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make explicit connections between the study of digital computation and that of
continuous dynamical systems (Crutchfield 1994).

Symbolic dynamics also has the interesting property of sometimes exhibiting
equivalence with the continuous system from which it originates. As long as a
partition is adequately selected, analysis of the symbol sequences can actually be
used to reconstruct the continuous dynamics of the original system. A specific kind
of partition, termed generating partition, can in fact yield ‘approximately complete
and precise descriptions of the system’ (beim Graben 2004: 47). Perfect definition of
a generating partition requires knowledge of the original dynamical system, but there
exist techniques for approximating these demarcations (e.g. Davidchack et al. 1999,
Kennel and Buhl 2003). Such generating partitions allow the symbolic dynamics to
be topologically equivalent to the original continuous dynamics (Kitchens 1998,
beim Graben 2004, Shalizi and Albers in press). However, finding generating
partitions is very difficult in systems consisting of more than two dimensions
(Kennel and Buhl, 2003), and they only work for deterministic dynamical systems
(Crutchfield and Packard 1982). Therefore, much of the practical applicability of
symbolic dynamics may lie in iteratively refined approximations of generating
partitions, rather than true generating partitions. For example, non-generating
partitions in symbolic dynamics have been used for describing the phase-space of
bimanual rhythmic co-ordination (Engbert et al. 1998) and of heart rate variability
(Kurths et al. 1995). However, with even slightly misplaced partitions, the threshold-
crossing method for emitting symbol strings from continuous trajectories can very

F(x)

F2(x)

Figure 4. The logistic map phase plot with �¼ 4.1. A portion of the phase space is outside
the interval [0, 1], and points leaving will tend to �1 through F iteration. However, a set of

points does not leave this interval, illustrated with one iteration of some value x (dotted
lines). The initial value x becomes FðxÞ, and remains in the [0, 1] interval. Symbolic
dynamics allows investigation into the nature of these iterations that do not escape (see text

for more detail).
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easily introduce severe compounded misrepresentations of the original continuous
dynamics, i.e., grammatical errors in the symbol sequences (Bollt et al. 2000, 2001).
Symbolic sequences from more complex systems have therefore often been subject to
more experimental or empirical styles of analysis (Daw et al. 2002).

To summarize, there have been two broad areas in which symbolic dynamics have
made a clear impact. In the first, and ultimately its origin, it is explored extensively
in pure theoretical contexts in mathematics to study tractable systems. In another,
it has played a role in simplified descriptions and statistical analyses of more complex
iterated mathematical processes, and even in application to dynamics of complex
physical systems. It may, we argue, offer something to cognitive science theory as
well. In the debate on representational format, symbolic dynamics could make
headway toward formalizing theoretical debate. Current discussion on symbolic
dynamics raises a number of important questions in this respect. We next consider
these, and then introduce some reflections on future directions for symbolic
dynamics in cognitive science.

4. Symbolic dynamics and cognitive science

Dietrich and Markman (2003) actually describe something very close to symbolic
dynamics in a short segment of their paper supporting discrete representations.
They offer a number of properties that cognition must have, which only discrete
representations endow. One of these properties is compositionality: representations
best explaining many cognitive processes must have component parts that are
combined (see also Fodor and Pylyshyn 1988, Marcus 2001). They argue that any
representational subsystem, if continuous, can only have parts if there is some
other system that discretely interprets its regions, and takes in discrete representations
as input. This is in fact a description of symbolic dynamics, though there are details
to be worked out. For one, the resultant symbols, if not time-course irrelevant,
might encode the original dynamics of the system, as mentioned in the way of
generating partitions above. This would mean an equivalence relation holds
between the two systems, at least in the sense that the symbols carry some of the
continuous information in the original dynamic subsystem. Secondly, it has been
demonstrated recently that dynamical systems actually do have considerably surpris-
ing computational powers. In fact, a number of these properties often considered
hallmarks of discrete-symbolic algorithmic processing can be approached with
symbolic dynamics.

For example, one such property, discrimination, is easy to achieve through
translation into symbol sequences. Multi-stable one-dimensional dynamical systems
can emit symbols pertaining to any stable point (and a given interval around it) in
its phase space—as a matter of discrete, symbolic output from that system. This
scenario may indeed be superior to verbalized discrete theories since symbolic output
from an iterated map retains some information about time. For example, a meta-
stable system that drifts slowly will produce symbol sequences with long strings of
identical symbols, indicating its inhabiting of some categorical state. The output
is therefore discretely representational, but also reveals patterns of change in time.
Perceptual state-space is of course not a matter of collapsing over a single
dimension—the situation becomes very complex when we consider the number of
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categories (symbols) that need to be represented, and the fact that our visual system,
for example, is translation invariant, so whatever partition can define the symbolic
output from visual to cognitive processes must exist in a very large number of
dimensions. A second problem concerns delineating the stages at which such
collapsing from continuous mappings to discrete symbol strings occurs. As
mentioned, to account for continuous perceptual states moving into something
akin to sets of sameness, there must be one or more stages of ‘analogue-to-digital’
(A-to-D) conversion.

Probably the most studied and established property that dynamical systems
exhibit through their symbolic dynamics is their digital computation – that a
description of dynamical systems can take the form of explicating its information-
processing capacities via symbol sequences. This feature approaches the well-known
issue of systematicity, a property that many have argued cognitive systems must
have (especially human ones; e.g. Fodor and Pylyshyn 1988, Hadley 1994, Marcus
2001). This discussion fits into the scope of symbolic dynamics in three ways. First,
it is possible to characterize the dynamics of a system through computational
descriptive schemes. For example, the classic paper by Crutchfield and Young
(1989) introduced an approach to nonlinear dynamical systems that quantifies
their computational qualities. Subsequent research has pursued the extraction of
such intrinsic computation from nonlinear dynamical systems, among other systems
(see Crutchfield 1994 and Andrews 2002 for reviews). Sought after qualities of
systematic computation urged by Hadley (1994) and Fodor and Pylyshyn (1988) may
very well be encoded in the edge-of-chaos dynamics of even simple systems
(Crutchfield and Young 1990).

The second way systematicity can fit into symbolic dynamics is through exploring
the ability of dynamic systems to acquire formal languages. The system that learns
the language may again be characterized in terms of symbolic dynamics. For
example, the well-known simulations in Pollack (1991) demonstrated that a neural
network can learn context-free languages and classify novel sentences from such
grammars via a decision process akin to symbolic dynamics (see also Cleeremans
et al. 1989 for related examples). More recently, Rodriguez et al. (1999) investigated
a very simple recurrent network in its ability to learn deterministic context-free
grammars. Networks that learned successfully performed a form of ‘counting’ in
their phase space. This allows successful learning of the context-free grammar
without explicitly implementing a pushdown automaton. Also, Tabor (2001) recently
used a neural network model trained to predict sequences of symbols from four
languages of differing levels of complexity (see also Tabor 2000). Networks trained
on context-free languages, as opposed to the regular languages, exhibited edge-
of-chaos effects (or intermittency), revealing the kind of intrinsic computational
qualities outlined in other nonlinear dynamical systems by Crutchfield and
colleagues (Crutchfield and Young 1989).

Finally, one may simply take the symbols for granted at some level. In this case,
though the solution appears simplistic, the difficulty is in delimiting and discovering
the nature of the interface between continuous perceptual states and the resultant
discrete cognitive informational states that undergo algorithmic manipulation.
Resorting to this idealization, and thereby taking for granted straightforward
algorithmic parlance about representations, requires explication of A-to-D conver-
sions between high-dimensional continuous perceptual states and their entryway
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into cognitive processing. Although the above review suggests the continuous
dynamics of simple systems can already exhibit surprising computational qualities,
it may be in the domain of this symbolic demarcation that debate between formats
is best mitigated. Following our discussion here of theoretical issues in the use of
symbolic dynamics, we offer some sketches of the ways in which this mitigation
might take place in computational models.

There are numerous issues with both symbolic dynamic theory and application
that are relevant to theoretical frameworks in cognitive science. We introduce three
of these issues here, and elaborate further in the subsequent sections of this article.
The first issue concerns the consequences of generating partitions. Some have argued
that the equivalence between symbolic dynamics (from a generating partition)
and the continuous mapping from which it originated, renders moot the debate
between continuous and discrete states in the mind (Crutchfield 1998, Shalizi 2004b).
Though compelling at first pass, the argument is based on simple, low-dimensional
systems—ones whose consequences cannot be handily generalized to noisy, high-
dimensional (and likely highly non-stationary) dynamics in neural systems at the
level of cognitive processing. As a second issue, we consider the implications of
recent discussion concerning the epistemic problems of finding appropriate
partitions for meaningful symbolic dynamics (beim Graben 2004). This has direct
relevance to conceptualization of ‘error’ in competence and performance, and the
nature of language comprehension and production, among other cognitive processes.
The final issue concerns how continuous and symbolic dynamical systems function in
tandem during perception and cognition. Presumably, if discrete-symbolic descrip-
tions are most suitable for ‘higher’ cognition, then there must be some stage at
which continuous dynamics of perceptual or ‘lower’ cognition gets transmogrified
into interpretable symbolic states.

4.1. Continuous-symbolic equivalence

As discussed above, there are many reasons to study continuous dynamic maps
via symbol sequences. An interesting fact for many such maps is that there exist
generating partitions that emit symbol sequences exactly reflecting the original
dynamics of the system. This has led some to argue that the debate concerning
discrete-symbolic and continuous-distributed representations is ill posed (e.g. Shalizi
2004b). Since a dynamical system can be seen as identical with some symbolic
dynamics, it might be inappropriate to suppose that two formats of representation
are at odds when they are mathematically equivalent. As already mentioned,
Crutchfield and collaborators (Crutchfield 1994) conceive of dynamics as inherently
computational, and offer numerous techniques for generating computational
machinery from symbolic sampling of continuous states (e.g. "-machines; Crutchfield
1994). Elsewhere, Crutchfield has argued that supposing dynamics can replace
discrete computation (e.g. Van Gelder 1998) neglects the intrinsic computational
nature of dynamical systems themselves (Crutchfield 1998).

Early in Crutchfield’s seminal paper (1994), he distinguishes between two concepts
of computation. The first, ‘useful’ computation, refers to specific instantiations of
input-output mappings in some computational architecture. The second, ‘intrinsic’
computation, concerns the basic capacities and limitations of a computational
system, dynamical or otherwise. This involves exploration or specification of
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information-processing capacities of a system, without reference to any specific
‘useful’ input–output accomplishment. This perspective has led to extremely fruitful
research on discovering the underlying computational aspects of nonlinear dynami-
cal systems. For example, early work by Crutchfield and Young (1989) sought to
specify and measure the complexity of minimal stochastic automata whose state
transitions (emitting symbols) embody the logistic map’s dynamics at differing values
of � (see also Crutchfield and Young 1990).

There are, however, reasons for remaining cautious about the direct implications
in our understanding of complex cognitive states. An in-principle statement
concerning the equivalence of continuous and symbolic dynamics in systems is not
sufficient on its own to alleviate debate. There are at least two related reasons for
this. First, relying on such equivalence neglects the very crucial and substantial
details that debate on representational format carries. A rather straightforward
one is the kind of characterization that symbolic and distributed formats receive.
For example, Andy Clark (2001) characterizes much symbolic cognitive theory as
resting on representations whose contents are semantically transparent. A classical
computational theory of language deals in representations of words, their meanings,
and the structures that they compose. These representational formats are highly
‘scrutable’, their significance in a system’s computation immediately accessible.
However, systems relying on probabilistic and distributed representations or
states, such as connectionist systems, often rely on formats that are semantically
opaque. For example, establishing the function of a hidden-unit manifold often
involves detailed statistical analysis of the hidden-unit activations under varying
circumstances. The resultant function may be very nonlinear and complex, and not
easily describable through commonsensical or folk-psychological labels.

For this reason, simply saying that the two kinds of descriptive machinery,
continuous and symbolic, both serve the same functions actually skirts some
substantive issues. The debate concerns explanation in terms of specific kinds of
computational mechanics—concretely identifiable words in our ‘language of
thought’ (Fodor 1983), or some other more or less semantically transparent discrete
states. These are pitted against models accounting for behaviour in terms of
distributed representations whose interpretations are less obvious, or perhaps
‘subsymbolic’ (Smolensky 1988). In fact, cognitive science has already had a
number of battles concerning whether these two systems are equivalent, or the
second is just a special case of the first, and so on (e.g. Fodor and Pylyshyn 1988,
Lachter and Bever 1988).

The second reason to be cautious about the lesson from symbolic-dynamic
equivalence is that ‘useful’ computation has been considerably less explored than
‘intrinsic’ dynamics in the study of computational mechanics. Although the current
accomplishments can only be described as some of the most exciting and relevant to
cognitive science, they have yet to delve into systems whose complexity can match a
level of description needed for understanding cognitive processes. Van Gelder (1998)
replies in this manner, remarking that when ‘it comes time to model the complexities
of real cognition—to publish in Psychological Review rather than Physica D—they
may find that the dynamics drops out of the picture, and the relevant story is
cast entirely at the level of the emergent computation. Alternatively, they may find
(as have many dynamicists) that the computational aspects play second fiddle to the
dynamics’ (1998: 13). This seems to misunderstand what is accomplished in symbolic
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analyses of dynamical systems: The descriptions are two sides of the same
computational coin. A more direct concern at present is whether meaningful
partitions can be established. As we approach a level of complexity that matches
what is accomplished in a neural substrate, or proposed cognitive processes of
multiple dimensions, the likelihood of finding generating partitions drops radically
(see next section).

So, whether or not we embrace the equivalence of symbolic and continuous
dynamics through generating partitions, we are still left with some confusion. Are
the discrete symbolic states of our cognitive system available for scientific scrutiny,
and the dynamics more complex (yet equivalent)? Or are discrete symbolic states
of our cognitive system inadequate explanatory constructs, and we should reach
for continuous dynamic descriptions of our mind/brain? Churchland (1992) offers
discussion relevant to these more substantive issues in the domain of neural
networks, and considers partitions of their hidden-unit state space that can reflect
conceptual structure in human cognition. Adopting a set of partitions, Churchland
argues, ‘may suffice for the accurate short-term prediction of its behaviour, but that
knowledge is inadequate to predict or explain the evolution of those partitions over
the course of time’ (1992: 178). We argue that, in the domain of higher levels of
cognitive processing, this position has considerable merit, but is very much without
consensus in the field. It is thus through these substantive issues that the two formats
of representation stake their respective claims.

4.2. Epistemic issues

Similar to Andy Clark’s (2001) distinction between transparent symbols and opaque
distributed representations, Atmanspacher (2000) makes a distinction between
epistemic and ontic types of description of chaotic systems. An ontic description is
exhaustive concerning the dynamical system—it comprehensively encapsulates the
composition of the dynamics. An epistemic description is framed in terms of
knowledge or ignorance of an observer evaluating these ontic ‘states’. Epistemic
descriptions are achieved by evaluation of an observed or measured dynamical
system, through statistical quantification or characterization of it. This terminology
of ontic and epistemic can be used to frame the previous section’s discussion of
equivalence through a generating partition. The pure equivalence between a
symbolic dynamics and its origin map can involve only ontic descriptions for any
system of sufficient complexity. That is, urging the equivalence of some symbolic
dynamics and the original system implies a kind of ontic state that is inaccessible
to us as observers. Instead, we are confined to epistemic descriptions for complex
cognitive systems. In order for a chosen symbolic dynamics to adequately explain or
represent the cognitive process under study, it must be chosen appropriately. This
is not a trivial matter. We consider two problems of these epistemic issues relating
to finding a good partition for a continuous map.

First, beim Graben (2004, beim Graben and Altmanspacher 2004) argues
that incompatible, but equally accurate, symbolic epistemic descriptions are possible
with multiple non-generating partitions. This means that two sets of different
symbolic dynamics may be equally adequate as formal descriptions of the original
dynamics, yet mutually incompatible with one another (cf. Quinean indeterminacy:
Quine 1960). beim Graben (2004) provides an example of a Hopfield network as
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a multi-stable dynamical system living in a space of many dimensions (Balkenius and
Gärdenfors 1991). There is no generating partition for this space, and indeed
multiple descriptions via symbolic dynamics can be mutually incompatible, while
remaining equally good (or bad) partitions of the underlying dynamical system.
Consequently, non-generating partitions can provide ‘conceptual’ descriptions of the
continuous system, and there may indeed be many such descriptions. While all of
them may serve as formal descriptions at a symbolic-discrete level, they can be
mutually incompatible with each other. Quine (1960) early on made very similar
points concerning the study of linguistic meaning by indicating that many equally
good (or bad) rule sets can exist for translation from one language to another; yet
these equivalent translation strategies may be mutually incompatible when compared
directly (see also Moore 1956 for a related classic theorem; Gauker 2003). It is crucial
to point out that this is not merely a fact of further exploring the ontic description
of the given system in order to select the better of these incompatible symbolic
accounts. In fact, Quine, and beim Graben and colleagues in symbolic dynamics,
reveal that even given the full set of ontic states themselves, there are still mutually
incompatible, yet thoroughly equally good, symbolic descriptions. In short, they
cannot be reliably adjudicated among.

A second issue concerns the kinds of errors that result from inappropriate
partitions. Bollt et al. (2001) analyse the tent map, whose generating partition is
known, and measure the topological entropy resulting from shifts of that partition to
varying degrees. The effects of shifted partitions are quite drastic, with topological
entropy being affected immediately, and in an irregular (non-monotonic) fashion.
The upshot, according to the authors, is that arbitrary partitions (e.g. Kurths et al.
1995) can result in ‘severe under-representation of a dynamical system’ (2001: 281).
It is important to point out that these results were based on a well-known
deterministic and simple dynamical system. The effects of noise (Crutchfield and
Packard 1982) and increasing complexity (Kennel and Buhl 2003) in degrading the
fidelity of the emitted symbolics are also well documented.

The foregoing remarks on epistemic limitations on symbolic dynamics have two
implications for current discussion. First, they serve to underscore the points made in
the previous section on equivalence. The possibility of the existence of a generating
partition is not sufficient to dissolve debate on symbolic versus continuous representa-
tion. Instead, the epistemological limitations on more complex, noisy dynamical
systems suggests that there is considerable room for debate concerning the adequacy
of either continuous or symbolic accounts for some cognitive process. Indeed, in most
cases (if not all), we do not have sufficient knowledge of the ontic conditions of some
cognitive process. The upshot for cognitive science is that continuous or symbolic
accounts are (1) highly unlikely to be resolved bymere recognition of equivalence, and
(2) are likely to offer differing amounts of coverage of the human data regarding these
ontic states—about which the field has much to discover.

4.3. A-to-D conversions

Despite these limitations, we argue that the promise of symbolic dynamics lies in
articulating the transition from dynamical, continuous descriptions of perception,
into the theoretical language of discrete, algorithmic processes for high-level
cognition. Whatever the ontic states underlying cognition, our epistemic descriptions

Notions of cognitive representation 335



and theories ought to be couched in structures or processes that bear causal
relationships to others, and ultimately, to our observable behaviour. If it is the
case that some are discrete and symbolic, there must occur a transition into them
from a continuous state-space of perceptual or early-cognitive processing. These
A-to-D conversions consist of collapsing the continuous-distributed representations
onto discrete-symbolic ones that cause inherent information loss about the
perceptual states feeding into them. However, this loss may be merely ‘lossy’, as in
image compression algorithms, where the resulting compact representations still
carry information appropriate for cognitive processing.

The question is then not merely when this transmogrification occurs, but also what
kind of information from continuous states these discrete states need in order
to account fully for observable behaviour. For example, in information-processing
accounts of cognition, Miller’s (1982) exploration of the concept of information
‘grain’ provided an early challenge to discover what kind of discrete representations
there are: what level of ‘granularity’ do discrete representations need to have to
account for cognition. For example, along with Miller’s work on the ‘response
preparation effect’, Abrams and Balota (1991) and Spivey et al. (2005) demonstrate
that dynamic response measures (e.g. force and velocity measures from a response
bar or continuously recorded computer-mouse movements) exhibit graded proper-
ties depending on the continuous strength or reliability of the information that
produced the motor output. In addition, a wide variety of eye-movement research
(reviewed above) suggests that metabolically cheap movements such as saccades
reveal a decision process that does not appear perfectly discrete. These studies
demonstrate that ‘echoes’ of continuous information states can be observed in
the dynamic properties of resultant responses. The discrete states that may have
mediated the transitions from sensors to effectors must carry at least some
relevant information from early graded states. In other words, while reaction time
may reveal information about the decision process during discrete, algorithmic
processing, the concomitantly graded manual output from the system indicates
that even when these discrete decision processes collapse onto the effectors, there
remains some fine granularity.

We can frame the situation simply by defining an idealized ‘problem space’ for
some cognitive process. The space may be maximally simple, from an idealized
or simulated continuous perceptual space into one or two symbolic processes. Here,
A-to-D conversion performs a useful computation in the Crutchfield sense, described
above. Whatever the intrinsic computational properties of the initial continuous
perceptual space, the system of continuous representation feeding into discrete
symbolic processing has an informational function in a problem space of, say,
evolutionary relevance (for some such thing as reproduction, or running away from
something that might eat you). A simple example is perceptual categorization.
An idealized continuous space of perceptual information can be manipulated so as
to output symbols feeding into some discrete process. This idealized scheme may be
suited for existence proofs of granularity of the A-to-D conversion to adequately
account for such graded effects outlined above (see Churchland 1992 for some early
possible examples).

Symbolic dynamics offers a playground in which this conceptual problem can be
formally explored. Given a dynamical system living in a state space of m dimen-
sions, a set of stable or meta-stable attractors can be explored via simulation.
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Like perceptual processes, this dynamical system can feed into a separate system,
described in a variety of ways (e.g. a Turing machine, or finite-state machine), that
receives symbolic input via threshold crossing in a partition carving that state space.
This collapse involves maximal loss: from m dimensions into 1 dimension of Q
possible states defining the partition. Of course, for simple systems such as the
logistic map (where m¼ 1), this collapse can still carry the original dynamics, and
entail some interesting computational properties. As for higher-dimensional state
spaces, there seem to be two ways that models of this kind might begin to approach
existence proofs for symbolization of a perceptual space. On the simplest side, one
might explore resultant algorithmic processing on symbolic output of just one
dimension with Q regions of one partitioning. These states may be numerous, or
refined, enough to carry some echoes of the original space. Another possibility is to
consider collapsing the state space of m dimensions into more than one partition.
The m-dimensional system may be collapsed onto an n-tuple of symbols, each
element of which is the output from some separate partition that uniquely carves the
state space. Exploration of this system would involve subsequent A-to-D/D-to-D
conversions, permitting sequenced levels of granularity in the various stages of
perceptual-cognitive processing (that is, without considering feedback projections).

There exist a number of ‘useful’ computational models performing symbolization
of this sort. For example, the decision processes of Pollack’s (1990) dynamical
recognizer and the Hopfield network of Balkenius and Gärdenfors (1991) that
implements non-monotonic logics are two relatively early models. Recently, Tabor
has specifically addressed the learning and processing of formal languages by such
systems (Tabor 2000, 2001), along with beim Graben and colleagues’ sophisticated
analyses (beim Graben et al. 2004). These are just a few of the enticing invitations
to employ symbolic dynamics in a way we recommend here: devising existence proofs
relating the stages of continuous-discrete transitions in a simplified problem space
akin to cognitive processes and their output. Though only promissory at this point,
symbolic dynamics may make it possible to reconcile both the dynamic and discrete
descriptions of the states and processes underlying cognition.

5. Conclusion

We do not have full privileges in our access to the ontic states of our mind/brain.
An inevitable fact about higher-order cognitive theories is that they are descriptive at
a very coarse level—it is currently an intractable problem to specify, even partially,
the dynamics underlying neural computation in a cognitive task of any nontrivial
complexity (e.g. Uttal 2001). Nevertheless, for the majority of cognitive scientists,
this daunting state of affairs does not invalidate proposals for structures and
processes of our cognitive system. In this article, we have limned the surface of a
framework within which competing theoretical accounts of representational struc-
tures and processes may have equal opportunity to contribute to our understanding
of cognition. Symbolic dynamic investigations of idealized problem spaces may
provide a common arena for exploring the interplay between continuous-distributed
and discrete-symbolic representational accounts. Moreover, as a framework
for further discussion, it may help both representational formats overcome the
limitations of time-course irrelevant descriptions of cognition. Given a set of input
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information and informational goals, symbolic dynamics offers both informational
and temporal insight into the transition from continuous perceptual trajectories into
more or less fine-grained discretized states for higher cognitive processes. There will
be, of course, some conceptual and technical obstacles in the way ahead, and we have
considered a number of these above.

Given the deep epistemic problems experienced by all theories of cognition, and
the complexity of the brain onto which they are imposed, it seems we might forever
be confined to epistemic descriptions of the ontic states of our cognitive system.
Regarding the state of the art in cognitive science, the dispute between two such
families of description, discrete-symbolic and distributed-continuous, thus seems just
as likely to be evenly conciliated than for one or the other to win permanent
prominence. This article offers some further considerations of symbolic dynamics to
contribute to ongoing debate (see also, for example, Goertzel 1998, beim Graben
2004). Mathematization of simplified problem spaces, such as perceptual categoriza-
tion or computation in ‘chaotic itinerancy’ (Tsuda 2001), may be the route to a
formal terrain permitting cohabitation of both kinds of theoretical constructs—or,
at least, a mutually supportive arena in which they can have a fair fight.

It is perhaps a striking illusion, at the physical level, that there exist discrete states
of the mind/brain. This at least seems to be the case if you grant that the substrate
is in constant motion, like Heraclitus’s river. The illusion is nevertheless difficult to
overcome, because our phenomenology seems to be in an inescapable embrace with
experiences that have strict boundaries. At the epistemic level, rather than the
phenomenological level, it may be inevitable that boundaries need to be placed
around neurophysiological complexity to construct sufficiently explanatory, and
tractable, theories of cognitive processes. This becomes evermore troublesome when
one considers functional redundancy and feedback loops within the substrate, as well
as between it and its environment. So, while theoretical debate may continue
concerning whether the mind is a system that imposes boundaries on a continuous
information flow, symbolic dynamics may offer a mathematical terrain in which
these boundaries can be rigorously explored.
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