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Abstract

When people communicate, they coordinate a wide range of linguistic and non-linguistic behaviors.

This process of coordination is called alignment, and it is assumed to be fundamental to successful com-

munication. In this paper, we question this assumption and investigate whether disalignment is a more suc-

cessful strategy in some cases. More specifically, we hypothesize that alignment correlates with task

success only when communication is interactive. We present results from a spot-the-difference task in

which dyads of interlocutors have to decide whether they are viewing the same scene or not. Interactivity

was manipulated in three conditions by increasing the amount of information shared between interlocutors

(no exchange of feedback, minimal feedback, full dialogue). We use recurrence quantification analysis to

measure the alignment between the scan-patterns of the interlocutors. We found that interlocutors who

could not exchange feedback aligned their gaze more, and that increased gaze alignment correlated with

decreased task success in this case. When feedback was possible, in contrast, interlocutors utilized it to bet-

ter organize their joint search strategy by diversifying visual attention. This is evidenced by reduced over-

all alignment in the minimal feedback and full dialogue conditions. However, only the dyads engaged in a

full dialogue increased their gaze alignment over time to achieve successful performances. These results

suggest that alignment per se does not imply communicative success, as most models of dialogue assume.

Rather, the effect of alignment depends on the type of alignment, on the goals of the task, and on the

presence of feedback.
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1. Introduction

Research in dialogue has shown that effective communication often occurs when the

cognitive processes of speakers and listeners align, that is, become similar. Alignment in

linguistic responses manifests itself in a number of ways. Interlocutors use the same syn-

tactic structures (Branigan, Pickering, & Cleland, 2000), the same ways of describing

objects or locations (Brennan & Clark, 1996; Garrod & Anderson, 1987), and converge

on the same topic of conversation (Sacks, Schegloff, & Jefferson, 1974). Alignment can

also occur in non-linguistic behaviors. For example, two people working together move

their bodies in similar ways (Shockley, Santana, & Fowler, 2003), distribute their visual

attention similarly (Richardson & Dale, 2005), and exhibit alignment across a wide range

of non-verbal responses, such as nodding and smiling (Louwerse, Dale, Bard, & Jeuniaux,

2012). In this study, we will focus on gaze alignment as a measure of shared visual

attention.

Even though it seems natural to assume that alignment might underpin successful com-

munication, the literature on the topic shows mixed evidence. When interlocutors use lan-

guage to help each other identify unfamiliar shapes (in tangram-matching tasks) or follow

directions on a path (in maze or map tasks), they are successful if they converge on a

common set of referring expressions or re-use similar syntactic structures (Anderson

et al., 1991; Brennan & Clark, 1996; Garrod & Anderson, 1987; Glucksberg, Krauss, &

Higgins, 1975; Krauss & Glucksberg, 1969; Reitter & Moore, 2014; Schober & Clark,

1989). However, not all types of linguistic alignments are predictive of task success.

Fusaroli et al. (2012), for example, show that indiscriminate and widespread alignment1

leads to a lower performance than a more moderate level of specific alignment in a joint

detection task (see also Wu & Keysar, 2007; who show that excessively entrained dyads

are more likely to commit errors in a tangram task). A related result is presented by Ire-

land and Henderson (2014), who found that dialog partners with higher levels of language

style matching were more engaged but were also less likely to negotiate successfully.

Furthermore, interactivity that can be defined as the possibility of interlocutors to provide

feedback seems to play a key role in alignment. When participants do the tangram task

alone, for example, they fail to come up with efficient referring expressions (Hupet &

Chantraine, 1992).

Interactivity is certainly crucial for communication, but it is currently not clear how it

influences communication outcomes or what the benefits of coordinating behavior are

when dyads interact to solve a task. In tangram tasks, for example, dyads reduce their

speech more when they can exchange feedback (Krauss & Weinheimer, 1966) and benefit

from physical co-presence, which aids the grounding of shared knowledge, and conse-

quently increases task success (Clark & Krych, 2004; Schober & Clark, 1989). The abil-

ity to interact, of which the exchange of feedback is an instance, is crucial for task

performance. However, more interaction does not automatically imply stronger alignment

of responses. It is conceivable that dyads utilize feedback to disalign rather than align

responses if the task requires it. In a study similar to the one we present here, Brennan,
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Chen, Dickinson, Neider, and Zelinsky (2008) (and follow-up work by Neider, Chen,

Dickinson, Brennan, & Zelinsky, 2010) had dyads work remotely to identify a “sniper

target” (a small red circular shape) in a complex scene. The authors manipulated the

amount and type of feedback the dyad was allowed to share (no communication, voice,

gaze, or both voice and gaze). When the dyads could interact, they had reduced error

rates compared to when they could not communicate. Crucially, the presence of feedback

led to disalignment, rather than alignment, of the attentional responses of the dyad (refer

to Figure 5 of Brennan et al., 2008, for an example). The exchange of feedback helped

the dyads improve their performance by diversifying, rather than homogenizing, their

joint search space.

This is an intriguing result: Most models of dialogue assume that interactivity fosters

alignment, rather than disalignment, and that alignment will boost task success. Several

interactive models of alignment have been proposed in the literature, explaining align-

ment using a range of different cognitive mechanisms such as priming (e.g., Pickering &

Garrod, 2004), partner-directed adaptation (e.g., Keysar, Barr, Balin, & Brauner, 2000),

mutual adaptation (e.g., Brennan, 2004), or lower-level mechanisms of perceptuomotor

coupling (e.g., Shockley, Richardson, & Dale, 2009). The debate is ongoing, and the vari-

ous mechanisms underlying successful dialogue and joint tasks will likely involve aspects

of several accounts, rather than just one of the prevailing theories (Dale, Fusaroli, Duran,

& Richardson, 2013; Fusaroli, Raczaszek-Leonardi, & Tyl�en, 2014). Despite their differ-

ences, however, all these theories assume that interactivity plays a fundamental part in

the dynamics of dialogue. They share the assumption that interactivity mediates alignment

and supports performance in communicative tasks.

In this study, we investigate gaze alignment. Our aim is to work out the relative contri-

butions of alignment and interactivity to successful task performance, and in particular to

elucidate their interaction. This will allow us to distinguish between purely alignment-

based theories (such as the Interactive Alignment Model of Pickering & Garrod, 2004)

and theories based on low-level coupling mechanisms (such as the coordination model of

Shockley et al., 2009), which do not tie task success directly to alignment. We hypothe-

size that interactivity plays a crucial role in determining whether alignment is correlated

with task success, which leads us to ask under which conditions feedback fosters disalign-

ment rather than alignment.

In previous work, reviewed above, participants were either introduced as new listeners

or were mere overhearers, and mostly took part in interactive tasks involving full two-

way dialogue. Moreover, alignment and interactivity were typically not experimentally

distinguished and were often studied separately (as in the tangram task). The work

reported here instead uses a dyadic task, and we experimentally manipulate the amount

of information that the interlocutors are allowed to exchange; from no interaction (a lis-

tener follows the instructions of a speaker in real time) to full dialogue (both interlocutors

communicate to achieve the task), while also including an intermediate scenario, in which

communication feedback is limited to backchannels. The comparison of these three setups

provides a direct test of the nature of interactive information exchange. Crucially, the

non-interactive version of our task is also dyadic—the listeners collaborate with the
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speakers; they are not mere overhearers (as in previous work). If it is merely this shared

experience that is required for task success, then performance should not change as a

function of feedback. The alternative hypothesis is that the alignment of a dyad, and pos-

sibly also their task performance, is altered by feedback in systematic ways.

Therefore, our experimental setup is designed to answer basic questions, yet unsolved,

that are of interest to all theories of interaction: Does interactivity lead to increased align-

ment? Does more alignment correlate with improved task performance, and is interactiv-

ity a mediating factor? Can we observe other successful strategies, such as disalignment?

1.1. The present study

In this experiment, we measure gaze alignment and task performance in a spot-the-dif-

ference task, in which interlocutors have to decide whether they are viewing the same

visual scene or not. We manipulate the amount of feedback that the interlocutors can

exchange. This manipulation is implemented using a between-participant design involving

three different groups of dyads. The design compares the following conditions: (1) no-
feedback, where one participant (i.e., the speaker) describes the scene, while the other

one (i.e., the listener) is not allowed to communicate and has to decide whether the scene

is the same or not; (2) minimal-feedback, where the listener is allowed to provide

backchannel responses to the speaker to signal understanding (e.g., “uh huh,” “mhm,” or

“yeah,” as well as “yes” and “no”); and (3) full-dialogue, where the interlocutors can dis-

cuss freely to reach a joint consensus before taking a decision.

The central prediction of alignment-based models of dialogue (such as Pickering and

Garrod’s [2004] Interactive Alignment Model) is that more alignment should lead to more

task success. However, in the literature, this prediction is mostly, if not uniquely, based

on linguistic responses. Alignment on visual responses can in fact be detrimental in a

search task, whereas diversifying visual attention can increase the likelihood of the dyad

spotting a difference Brennan et al. (2008).2 Moreover, in such a task, alignment can only

be predictive of task success if the dyad can build a common ground by fully interacting

with each other. Common ground refers to what the interlocutors know about each other’s

knowledge (e.g., which objects they have detected in a visual scene). Such common

ground is necessary if interlocutors are to develop effective visual search strategies

through dialogue.

We expect dyads to display stronger gaze alignment in the no-feedback condition. The

inability of the listener to signal his/her understanding to the speaker presumably forces

them to follow the speaker’s instructions more closely, leading to more gaze alignment.

If there is too much alignment, however, then we expect this to be detrimental to task

performance: If the listener merely follows the speaker’s gaze, rather than utilizing the

information provided, then they are more likely to miss key differences in the scene. In

contrast, the more feedback is possible, the better the dyads can diversify their search

strategy. This should result in decreased alignment (as the attentional responses of the

interlocutors diverge), but increased task performance, especially when the dyad can fully

interact, that is, in the full-dialogue condition. Finally, we predict that only when
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interlocutors can fully interact, they can incrementally construct and maintain gaze align-

ment over the course of a trial. We expect this to be a critical signature of task success.

However, when interlocutors are not free to exchange feedback, or when feedback is only

minimal, they cannot construct a common ground. As a consequence, they are unable to

coordinate gaze over time and to use this to successfully accomplish on the task.

2. Method

2.1. Participants

Forty-eight dyads (16 per sub-experiment) were recruited through the Student Careers

Service of the University of Edinburgh. Each participant gave informed consent and was

paid £7 for participating. Only two dyads knew each other before participating in the

study.

The sample size of 16 participants per sub-experiment was determined before running

the experiment, based on the prior literature on eye-tracking studies of dialogue behavior

(e.g., Dale, Kirkham, & Richardson, 2011a). No stopping criterion was used for the data

collection; that is, all participants of a given sub-experiment were run before the data

were analyzed.

Ethical approval for this study was granted by the Ethics Committee of the School of

Philosophy, Psychology and Language Sciences of the University of Edinburgh, in accor-

dance with the University’s Ethics Code of Practice and the British Psychological Society

guidelines on ethics.

2.2. Materials

One hundred photo-realistic scenes were used, representing a mix of indoor and out-

door settings taken from the Internet, as well as from existing image databases (e.g.,

LabelMe; Russell, Torralba, Murphy, & Freeman, 2008). A target object and the distrac-

tors were inserted in the scene, using Photoshop. Distractors were used to avoid the

development of a scanning strategy and to make the identification of the targets more

challenging (refer to Fig. 1 for an example image). Each scene was fully annotated with

polygons, using the LabelMe toolbox (Russell et al., 2008). The polygons were then used

to map eye movement fixations onto objects, using their screen coordinates. On average,

there were 21.48 � 10.74 annotated objects per scene.

2.3. Procedure

Participants performed a spot-the-difference task on 100 visual scenes (4 practice trials

and 96 experimental trials) while their eye movements and speech were recorded. Each

participant used a separate screen; participants were not able to see each other or each

other’s screens while performing the task. For the no-feedback and minimal-feedback
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conditions, one of the participants was the speaker, who had to describe the visual scenes

to the other participant, the listener, who had to decide whether they were viewing the

same scene or not. For the full-dialogue condition, the dyads could fully interact, so there

were no such roles. However, also in this scenario, one member of the dyad, chosen at

random at the beginning of the experiment, provided the task response. However, we

highlighted in the instructions that the decision should have been reached jointly.

Half of the scenes were identical, while a difference was present in the other half of

the scenes. To make the task more challenging, in the Different trials, we changed either

the position of the target object in the scene (i.e., both scenes contained exactly the same

objects, but one was displaced to the left or right) or its visual presence (i.e., in one of

the two scenes, the target object was missing). For the Same trials, both scenes were

identical.

In a subset of the scenes (38), we manipulated the visual saliency of the target object,

as well as its contextual congruency within the scene (similar to Coco, Malcolm, & Kel-

ler, 2014). This manipulation was introduced following Underwood, Templeman, Lam-

ming, and Foulsham (2008) to examine whether low- and high-level informational

properties of the target could mediate performance on the spot-the-difference task in a

dialogue setting. However, this manipulation is not the focus of the current study, which

examines a broader experimental hypothesis about gaze alignment, task success, and

interactivity. Therefore, all experimental trials were analyzed together.

As noted above, interactivity was manipulated by running the three experimental

conditions (No-feedback, Minimal-feedback, and Full-dialogue) as three sub-experi-

ments with different sets of participants. The no-feedback situation was created by not

allowing the listener to give any information to the speaker. The only information

about the listener that the speaker receives is that the speaker knows when a decision

has been made by the listener, as this is when the trial ends. The speaker is not

given any information on which decision was made by the listener, or whether it was

correct or not. The minimal-feedback condition was created by allowing the listener

Fig. 1. An example photo-realistic scene used in our experiment. The red box indicates the target object

(flag), which was placed differently for the speaker (bottom left) and the listener (top right). The red box is

used for illustration only and was not shown to participants.
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to provide the speaker with yes/no responses and backchannel utterances. In order to

ensure that feedback is constrained in this way, the experimenter monitored the speech

of the listeners remotely through a Motorola baby monitor, and checked a sample of

the recorded speech of the listeners to ascertain that the instructions were correctly

followed. The listeners were made aware of this in the written instructions. Finally,

the full-dialogue condition was created by allowing the dyads to communicate as they

wished. The constraint was that only one of the interlocutors could provide the

response, after a joint decision was taken. We investigate this manipulation as a Feed-

back variable with three levels.

Two SR EyeLink II head-mounted eye-trackers were used to monitor participants’ eye-

movements with a sampling rate of 500 Hz. Images were presented on a 21″ Multiscan

monitor at a resolution of 1,024 9 768 pixels. Participants sat 60–70 cm from the com-

puter screen, which subtended a region of approximately 20° of visual angle. Eye move-

ments of participants were co-registered; that is, the onset of the scene and the

timestamps of trackers were synchronized. A test of eye dominance was performed at the

beginning of each session for both participants, and only the dominant eye was tracked.

For the No-feedback and Minimal-feedback conditions, participants in the dyad were

invited to decide themselves whether they wanted to play the role of the speaker or the

listener, after reading written instructions which explained both roles. In the instructions,

the speaker was asked to describe the scene to the listener, such that they would be able

to decide whether the scene was the same or not. For the Full-dialogue condition, the

member of the dyad providing the spot-the-difference response was randomly chosen by

the experimenter. In the instructions of this sub-experiment, participants were told to have

a discussion in order to reach a joint decision and to reach agreement before providing

the response.

The participants were not informed of the types of differences that could be present in

the scenes. They were just told that there was either one difference or no difference. Both

participants were recorded using lapel microphones. The trial ended when the decision

(“different” or “not different”) about the scene was made by pressing the “l” or “s” key

on the keyboard. No time limit was set to take a decision. At the end of every trial, drift

correction was performed on both participants, after which the next trial started. A nine-

point calibration was performed at the beginning of the session and repeated

approximately halfway through the session. Some participants required more than two

calibrations. At the beginning of every session, participants were given four practice trials

to familiarize them with the experiment. The duration of the experiment was between 45

and 60 min.

2.4. Analysis

We examine gaze alignment in the dyad in order to determine whether it is a necessary

precondition for task success and whether feedback enhances or reduces alignment, espe-

cially for correct responses.
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2.4.1. Cross-recurrence quantification analysis
In order to obtain empirical measures of gaze alignment, we utilize recurrence quantifi-

cation analysis (RQA, Marwan, Carmen Romano, Thiel, & Kurths, 2007; Marwan &

Kurths, 2002; Zbilut, Giuliani, & Webber, 1998). This technique makes it possible to

quantify how, and to what extent, a signal is revisiting a similar state over time. When

RQA is applied on two different streams of the same type of information, such as the eye

movement trajectories of two interlocutors, it is called cross-recurrence quantification

analysis (CRQA).

In this study, we focus on the following CRQ measures: (a) the recurrence rate (RR),

which measures the density of recurrence points in the whole Cross-recurrence Plot

(CRP). This measure summarizes the amount of recurrence occurring overall. A high

gaze RR indicates that the interlocutors look at the same objects, including recurrence of

the interlocutors with themselves and regardless of directionality. However, we are not

just interested at such “indiscriminate” recurrence. Rather, we want to focus on the recur-

rence properties observed when the two time series align. This can be done by looking at

the properties of the diagonal lines of a CRP. In particular, we consider: (b) the average

length of the diagonal (L), which reflects the regularity of the system, whereby high val-

ues of L indicate that the dyad consistently align on the same set of objects; (c) the per-

centage of recurrence points forming diagonal lines (DET), which reflects the

predictability of the system: high DET values indicate that when the alignment of the

gaze of the dyad on the same objects, it does so for a long period of time; and finally (d)

the entropy of the line distribution (ENTR), whereby high ENTR values indicate that the

time segments in which the dyad gaze alignment varies widely.3 As scan patterns are cat-

egorical sequences, we have used a delay of 1, an embedding of 1, and a radius of

0.0001 to run the CRQA analysis (see Dale, Warlaumont, & Richardson, 2011b, for more

details).

Moreover, in order to track how gaze alignment develops as the interaction pro-

gresses, we compute window cross-recurrence (refer to Boker, Xu, Rotondo, & King,

2002, for a similar approach based on correlation). For this, a cross-recurrent plot of

the two series is computed in overlapping windows of a specified size for a number

of delays smaller than the size of the window over the two series. The window is

moved with a fixed step. As our series are normalized to be 101 bins, we have cho-

sen a window of size 10, we use a delay of 5, and move the window by a step of

2. On each CRP, the same measures described above (e.g., RR) can be extracted. In

the main paper, we report RR for correct trials only, as we are interested in examin-

ing how overall gaze alignment is established over time under the different feedback

conditions during successful interactions. In the Supplementary Material, however, we

provide the reader with the time-course results for the other measures of L, DET, and

ENT.

Please refer to Marwan et al. (2007) for a more detailed description of these measures,

to Coco and Dale (2014a,b) for an explanation of the CRQA method in the context of

behavioral data, to Anderson, Bischof, Laidlaw, Risko, and Kingstone (2013) for an

explanation of the method in the context of eye movement, and to Coco and Dale
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(2014a,b) for the R crqa package,4 which was used to compute the recurrence measures

reported in this study.

(In A of the Appendix, we also report results corroborating those ones presented in the

main text, using diagonal-wise cross-recurrence, which is an approach previously applied

to measures gaze alignment during dialogue, for example, Richardson & Dale, 2005;

Richardson, Dale, & Kirkham, 2007.)

2.4.2. Gaze alignment and covariates
CRQA is computed on eye movement responses of the interlocutors in each dyad, rep-

resented in the form of scan patterns (SPs), that is, temporal sequences of fixated objects

(e.g., Coco & Keller, 2012; Noton & Stark, 1971), for windows of 25 ms each.5 Each

trial is self-terminated by the listener; thus, SPs differ in length, especially across the

three Feedback conditions. (The mean durations are No-Feedback: 14.22 � 9.41 s, Mini-

mal-Feedback: 17.31 � 11.18 s; Full-dialogue: 22.97 � 13.72 s). We, therefore, normal-

ize each scan pattern (SPold) by mapping it onto a normalized time course of fixed length

SPnew (101 bins). For each SPold, we slide a time window w with the number of old time

points ki corresponding to ki = length(SPold)/length(SPnew).

In each w, we calculate the proportion of fixations for each unique object looked

at, and subsequently select the object with the highest proportion of fixation to be

mapped into the corresponding unit of the normalized time-course.6 In practice, for

each SP, we select the sequence of objects attended to most of the time. The techni-

cal advantage of normalizing the SPs is that we can construct summary heat maps of

the CRP for the experimental factors of interest (Feedback, Accuracy), as all CRPs

have the same 101 9 101 dimension, rather than having to pick just a couple of illus-

trative examples, as it is done by most of the literature using this method. Moreover,

the theoretical advantage is that the measures of gaze alignment are now comparable

between the three Feedback conditions, and any difference observed can be genuinely

attributed to the presence of Feedback, rather than to incidental differences in trial

duration.

We fit linear-mixed effect models with measures of gaze recurrence as our depen-

dent variables (DVs) and two independent variables (IVs): Feedback, a between-

participants variable (No-feedback, Minimal-feedback, or Full-dialogue), and the Accu-

racy of the listener in detecting whether they were viewing the same scenes as the

speaker (i.e., a binomial variable with 1 corresponding to correct and 0 to incorrect

responses).

Moreover, we consider the Response Time (accounting for the duration of the trial)

and the Order of trials (accounting for learning strategies) as covariates and control for

their effects on all DVs reported in this study. In particular, we residualize them against

the DV under analysis in a simple linear regression model (depM ~ RT + Order, using
R syntax), and we take the residuals obtained as the DV for further inferential analysis.

This ensures that the effects of the IVs (Feedback and Accuracy) on each DV analyzed

are not influenced by these incidental covariates. We report and visualize the cross-recur-

rence measures RR, L, DET, and ENTR.
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2.4.3. Statistical analysis
All statistical inferences were drawn using the framework of linear mixed effects

(LME) models as implemented by the lme4 (Bates, Martin, Bolker, & Walker, 2015)

package in the R programming language. Simply put, LME is a form of hierarchical

regression that can account for the variability of random variables, which usually relate

to sampling, for example, Participant and Item (Baayen, Davidson, & Bates, 2008).

Specifically, in LME models, the dependent variable is a linear function of different

predictors (fixed effects), and the variance implicit in the multilevel structure of the data

is accounted for by grouping based on the random variables of the design. Our fixed

effects are Feedback (No-feedback, Minimal-feedback, Full-dialogue) and Accuracy (Cor-

rect, Incorrect). Our random effects are Dyad (48 levels), entered as a between-participant

variable and Scene (384 levels, i.e., the overall number of individual scenes).7 We

attempted to fit mixed-effects models with full fixed effects structure (i.e., all main effects

and their interaction, depM ~ Feedback * Accuracy, using lme4 syntax), while also

including a maximum random effects structure, in which random variables are included

both as random intercepts and as uncorrelated random slopes (e.g., (0 + Feedback |
Dyad)).8 This approach is known to result in the lowest rate of Type 1 error (Barr,

Levy, Scheepers, & Tily, 2013). However, none of such maximal LMEs converged on

any of the DVs extracted from our data. Thus, in order to have a principled way of

selecting the final model, which is also justified by the data, we utilized the R package

lmerTest (Kuznetsova, BruunBrockhoff, & HauboBojesenChristensen, 2014) and per-

formed a backward selection only on the random structure of the model removing those

terms (evaluated one at time, and starting from the largest model including all random

effects) which, when included, did not improve the model fit at p < .1 (see Kuznetsova,

Christensen, Bavay, & Brockhoff, 2015 for greater details on the selection procedure).

Finally, in order to analyze windowed cross-gaze recurrence, beside the predictors of

Accuracy and Feedback, we include a Time predictor in the LME model, represented as

an orthogonal polynomial of order two (Time1 and Time2), to capture how gaze recur-

rence evolves during the course of a trial.

In the results tables, we report the coefficients, standard errors, and t-values. We derive

p-values for the fixed effects in the LME models from F -tests based on the Satterthwaite

approximation of the effective degrees of freedom (Satterthwaite, 1946).9

3. Results and discussion

From a total of 4,608 trials (16 dyads per 3 feedback condition over 96 experimental

items), we had to remove 686 trials (i.e., 15% of the data; 187 in the No-feedback condi-

tion, 311 in the Minimal-feedback condition), and 188 in the Full-dialogue condition, due

to poor calibration (the threshold for excluding trials was set at >10% of out-of-range fix-

ation for either partner in the dyad), reaction-times smaller than 250 ms (responses taken

involuntarily), failed synchronization between the eye-trackers, or machine error. There-

fore, the results reported will be based on the analysis of 3,922 unique trials.

10 M. Coco, R. Dale, F. Keller / Topics in Cognitive Science (2017)



3.1. Gaze alignment

In Fig. 2, we show heatmaps that visualize the recurrence rate for the alignment of

gaze across the conditions of Feedback (No-feedback, Minimal-feedback and Full-dialo-

gue) and Accuracy (Correct, Incorrect). We observe that the amount of alignment

decreases with increased levels of feedback. Crucially, the overall amount of RR in the

heatmaps changes as a function of both Feedback and Accuracy. In particular, Incorrect

responses are associated with a higher RR of gaze for the No-feedback condition, while

the opposite effect is observed for the Full-dialogue condition.

To further analyze the patterns underlying gaze alignment, we focus on summary mea-

sures extracted from the CRP, graphed in Fig. 3, with LME model coefficients reported

in Table 1. Starting with recurrence rate (RR), which represents how likely it is that the

dyads look at the same objects (irrespective of directionality), we find that RR is margin-

ally higher in the No-feedback condition than in the Full-dialogue condition (marginal

Fig. 2. Heat map of recurrence rate for the cross-recurrence plot of gaze alignment crossing Feedback (No-

feedback, Minimal-feedback, Full-dialogue) and Accuracy (Correct, Incorrect). Recurrence values range from

0 to 0.4, as each heatmap was normalized to sum to 1. The color map used is jet, which goes from blue (low

recurrence) to red (high recurrence).
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effect of No-feedback in Table 1). Furthermore, RR is significantly higher for Incorrect

trials than for Correct ones, but only in the No-feedback condition (significant interaction

of Accuracy: No-feedback in Table 1). The same pattern is observed for L (length of the

diagonal), which represents the average number of time points along which the dyad

aligns gaze. We find that L is significantly higher in the No-feedback condition compared

to Full-dialogue, and that L is higher for Incorrect trials than for Correct trials, but only

in the No-feedback condition.
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Fig. 3. Bar plots for the gaze alignment recurrence measures of RR (recurrence rate), L (length of the diago-

nal line), DET (percentage determinism) and ENTR (entropy), mean and 95% CI, for the variables Feedback

(No-feedback, Minimal-feedback, Full-dialogue) and Accuracy, represented as oriented and colored lines

(Correct: 45°, red; Incorrect: �45°, blue).
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This indicates that the impossibility of exchanging feedback induces the listener to rely

more strongly on the information delivered by the speaker; hence, the listener tends tend

to look at the locations that the speaker has examined. This manifests itself as increased

alignment. However, as our task is inherently a visual search task, too much alignment

can mean that the listener is missing out visual information that is not directly referred to

by the speaker, leading to the association between alignment and incorrect trials that we

observe. If the listener can feed back information to the speaker, a better strategy for the

dyad is to diversify their visual search strategy to increase the probability of finding out

whether the scenes differ. This is presumably what happens in the Full-dialogue and Min-

imal-feedback conditions, where we observe decreased alignment, and no association

between Accuracy and alignment.

When looking at determinism (DET), we find that both No-feedback and Minimal-

feedback show significantly higher DET values than Full-dialogue, meaning that the gaze

alignment in these conditions is more predictable. By exchanging information, the dyads

are able to better divide their search space, which implies a less predictable pattern of

alignment. Finally, when looking at the entropy of the gaze (ENTR), which represents

how regular the phase of the alignment is, we find that both the No-feedback and Mini-

mal-feedback condition have significantly higher entropy than the Full-dialogue condition.

Being able to exchange feedback helps the dyad to establish a more regular pattern of

alignment, reducing entropy.10

This analysis examined the visual attentional strategies of a dyad and clearly indicated

that, in a spot-the-difference task, gaze alignment per se does not increase task success.

Moreover, we found that feedback decreases rather than increases the attentional align-

ment of the dyad. This result is in line with previous literature on collaborative search

tasks (Brennan et al., 2008; Neider et al., 2010), where the presence of feedback (espe-

cially a gaze cue) was shown to diversify the dyad’s search strategies and improve their

response accuracy.11

3.2. Gaze recurrence over time

In Fig. 4, we visualize how gaze recurrence evolves as a function of the trial for the

three Feedback conditions, and in Table 2, we report the coefficients of the mixed model.

Gaze recurrence increases linearly as a function of Time, and it has an upward bowing

trend, that is, a decrease followed by an increase (main effects of Time1 and Time2). Cru-

cially, for the dyads in the No-feedback and Minimal-feedback condition, gaze recurrence

is significantly lower than in the Full-dialogue condition. This result suggests that only

when interlocutors can fully interact, they manage to form and maintain aligned gaze,

while also being successful at the task. When looking at the interactions between Feed-

back and Time, we observe that for the No-feedback and Minimal-feedback condition,

gaze recurrence increases more over the trial than for Full-dialogue, especially at the end

of trial.

Interestingly, we also observe a sharp increase of recurrence rate both at the beginning

and at the end of the trial, especially when dyads cannot exchange any feedback. This
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can be seen in the two-way interaction between No-feedback and Time2, which indicates

an upward bowing trend of recurrence. In section Additional measures influencing atten-
tion allocation and gaze alignment of the Supplementary Material, we isolate additional

bottom-up (visual saliency) and top-down (e.g., number of fixated objects) mechanisms

that may underlie this trend. Moreover, in section Time-course windowed analysis for the
C/RQA measures of L, DET and ENTR, we report also results for the time course of the

measures L, DET and ENTR, which entirely corroborate the results reported above,

where the same measures are computed on the trial as a whole.

Table 2

Windowed cross-recurrence. Coefficients of mixed-effects model of recurrence rate, modeled as a function of

the predictors Feedback (sum-coded, with Full-dialogue as the reference level for No-feedback and Minimal-

feedback), and Time represented as an orthogonal polynomial of order two (Time1 and Time2). We report

coefficient b, standard error, t-value, and associated p-value. Random effects included are Dyad and Scene

Predictor b SE t p

Intercept 14.39 0.34 41.79 .0001

Time1 8.38 1.37 6.10 .0001

Time2 9.70 1.41 6.86 .0001

No-feedback �0.29 0.06 �4.65 .0001

Minimal-feedback �0.63 0.06 �10.08 .0001

Time1: No-feedback 0.82 0.43 1.90 .06

Time1: Minimal-feedback 0.82 0.43 1.92 .05

Time2: No-feedback 4.78 0.43 11.09 .0001

Time2: Minimal-feedback 1.77 0.43 4.16 .0001
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Fig. 4. Windowed cross-recurrence of gaze (recurrence rate, RR) for correct trials only in the three feedback

conditions (No-feedback: black, tick line; Minimal-feedback: yellow, dashed line; Full-dialogue: green, dotted

line), over time (50 points, which results from moving the window by a step of two over 101 points of the

normalized scan patterns).
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4. General discussion

Research in dialogue has often assumed that interlocutors align their cognitive pro-

cesses to maximize mutual understanding (Pickering & Garrod, 2004). Alignment

emerges both in linguistic terms, such as converging on a common lexicon (Brennan &

Clark, 1996), and in non-linguistic responses, such as in postural sway (Shockley et al.,

2003), or in the distribution of visual attention (Richardson & Dale, 2005). Most of the

current models of dialogue agree, moreover, that the exchange of interactive cues

between interlocutors plays a key role in the formation of a common ground (e.g., Bren-

nan, 2004), the management of individual cognitive effort (e.g., Shintel & Keysar, 2009),

and the microdynamics of perceptuomotor coordination (e.g., Shockley et al., 2009), as

well as the development of abstract communicative systems (e.g., Garrod, Fay, Lee,

Oberlander, & MacLeod, 2007).

An important implication of this literature is that more alignment (indexing better

mutual understanding of interlocutors) should result in more effective joint actions. Thus,

in a task in which dyads need to share information to order to take a joint decision,

increased alignment should predict higher task success. This hypothesis has been tested

mostly using speech data collected during referential communicative tasks such as the

map/maze task or the tangram task (e.g., Anderson et al., 1991; Garrod & Anderson,

1987; Krauss & Glucksberg, 1969); but the results have been mixed. On one hand, dyads

who are lexically entrained, syntactically or lexically primed, are faster and less error-

prone (e.g., Clark, 1996; Foltz et al., 2015; Nenkova, Gravano, & Hirschberg, 2008; Reit-

ter & Moore, 2014). On the other hand, a large degree of knowledge overlap in the dyad,

obtained through excessive entrainment, induces the dyad to commit more errors (Wu &

Keysar, 2007). Other studies using alternative experimental paradigms have uncovered

similar contradictions, whereby dyads collaborating on a perceptual task are more effi-

cient than single participants (Bahrami et al., 2010), but this is not directly reflected in

language use, where indiscriminate lexical alignment leads to lower performance (Fusar-

oli et al., 2012).

Interactivity between interlocutors is also a crucial component of task performance.

Studies that have examined this issue by looking at, for example, the role of overhearers,

the physical co-presence of interlocutors, and the types of feedback used. The results

have mostly demonstrated a positive correlation between interactivity and task perfor-

mance (Clark & Krych, 2004; Krauss & Weinheimer, 1966; Schober & Clark, 1989).

However, the assumption that more interactivity and higher alignment would automati-

cally imply more accurate task performance is not supported in all studies. The interplay

between these three factors could in fact depend on the goals of the task, as well as on

type of response observed. Brennan et al. (2008), and later Neider et al. (2010), for

example, demonstrate that interacting with the partner improves target detection in a col-

laborative search task. However, feedback seems to foster the disalignment of the eye

movement responses of the dyad, rather than encouraging alignment (even though these

studies did not explicitly test this claim). In fact, through feedback, the dyad diversifies
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the individual search strategy of the interlocutors, so as to increase the joint likelihood of

finding the target.

In this paper, we set out to disentangle the relationship between alignment and task

performance by focusing on the role of interactivity. In an eye-tracking dialogue experi-

ment, we used a spot-the-difference task, in which dyads of participants had to guess

whether they were looking at the same visual scene or not. We manipulated interactivity

as the amount of information that could be shared between the participants in each dyad:

The interlocutors could either exchange no feedback or minimal feedback (backchannels

only), or they were allowed to engage in full dialogue.

We analyzed the experimental data using cross-recurrence quantification analysis on

the eye movements of speakers and listeners (Anderson et al., 2013; Marwan & Kurths,

2002; Richardson & Dale, 2005). The results show that the recurrence rate and determin-

ism of gaze alignment is higher, and the mean diagonal longer, when the listener cannot

exchange feedback with the speaker. Crucially, increased gaze alignment in the no-feed-

back condition was associated with significantly worse task performance. This result is

consistent with the previous literature on collaborative search tasks (Brennan et al., 2008;

Neider et al., 2010), in which the presence of feedback was shown to diversify the dyad’s

search strategies. Moreover, when looking at how gaze alignment is established during

those trials that were answered correctly, we find that dyads are best able to form and

maintain aligned gaze in the full-dialogue condition.

Performance in a visual search task is optimal when the members of the dyad diversify

their strategies; that is, the listener disengages to some extent from the precise visual

implications of what the speaker is saying. This strategy is particularly successful when

the dyad cannot exchange information and therefore cannot form a shared common

ground for the scene. The presence of feedback makes it possible to better divide the

search space in the scene and obtain a more organized attentional alignment (which mani-

fests itself as lower CRQA entropy).

Overall, our results have three implications for current models of dialogue: (1) interac-

tivity (feedback, in our case) directly mediates cognitive alignment and ultimately also

task success; however, (2) cognitive alignment is not directly associated with task suc-

cess, as most models of dialogue have claimed; rather, (3) alignment of gaze is negatively

correlated with performance in a collaborative search task when feedback cannot be

exchanged.

This study therefore poses important challenges to models of dialogue which uniquely

center around alignment (e.g., the Interactive Alignment Model, Pickering & Garrod,

2004). We find that alignment per se cannot be taken as a proxy for effective communi-

cation. In fact, dyads align their gaze to compensate for the lack of feedback, rather than

the other way around (i.e., aligning their gaze because of feedback). The importance for

such compensatory mechanisms is recognized by recent models of dialogue, which give

a prominent role to interpersonal synergy and envision communicative dialogue as a

fluid experience, in which alignment and disalignment can both be strategies to reach

shared understanding and task success (e.g., Dale et al., 2013; Fusaroli et al., 2014;

Mills, 2014).

M. Coco, R. Dale, F. Keller / Topics in Cognitive Science (2017) 17



What is emerging from this literature, and from our study, is therefore a new model

of dialogue in which the type of interaction between the interlocutors is crucial, as it

determines whether they are able to develop an optimal strategy for the task they are

trying to solve. In our case, full-dialogue interaction (and to a lesser degree minimal-

feedback interaction) makes it possible for the dialogue partners to deploy a strategy

that relies on division of labor to efficiently search a visual scene, resulting in

increased task success. As a consequence of this strategy, alignment is reduced in full

dialogue compared to less interactive conditions. In this scenario, alignment is a con-

sequence of interaction type and task. This differs markedly from the assumption that

a cascade of alignment underpins successful dialogue per se (as in the Interactive

Alignment Model).

Note that the claims we can make based on the present study are limited to gaze

alignment during linguistic interaction. However, alignment processes occur across a

range of other domains, affecting a variety of coordinative behaviors people engage

in. This includes simple joint tasks to large collective activities such as war (McNeill,

1997). Also, the growing literature on joint action is seeking a mechanistic under-

standing of how we coordinate with each other both in laboratory settings and in

more natural tasks (Sebanz, Bekkering, & Knoblich, 2006). All these domains invoke

different levels of analysis. For example, the capacity to coordinate musically, such as

in a duet, is not merely a matter of “getting the notes right” but involves using vari-

ous multimodal signals to guide and structure each other’s musical behavior (Kawase,

2014). But in these non-linguistic domains, the same principles that we observed in

this study may hold. Different interactive tasks demand a balance of alignment and

disalignment, suggesting that task success depends on a mixture of behavioral and

cognitive strategies. In the music case, for example, aligning too much may sound

odd. During jazz improvization, for example, it is common to align on particular

motifs, but success in such improvization also involves moving away from these

aligned motifs in new and different ways (e.g., Walton, Richardson, Langland-Hassan,

& Chemero, 2015).

Our study raises new questions, which we aim to address in future research. The most

important limitation is that we only measured gaze alignment. In the full-dialogue condi-

tion, it is also possible to observe linguistic alignment between the two dialogue partners.

This can include re-use of lexical items, syntactic categories, grammar rules, or whole

constructions. It is perfectly possible that linguistic alignment behaves differently from

gaze alignment, for example, in that more alignment increased task success (as in Reitter

& Moore’s, 2014 study, using the Maptask corpus). It is important to note that an analy-

sis of linguistic priming between interlocutors in not possible in the no-feedback and min-

imal-feedback condition, as only one of the dialogue partners is allowed to speak in these

conditions. This means that a direct investigation of the interaction between the amount

of feedback and the amount of linguistic alignment (and their effect on task success) is

not possible. However, we could instead measure self-alignment (the degree to which a

speaker repeats their own linguistic items) in the no-feedback and minimal-feedback con-

ditions.12
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Another related item of future work is the issue communicative efficiency, in particular

the question how the structure of utterances changes as the experimental session develops

(e.g., do utterances become shorter as the task progresses or if more alignment occurs?).

Another possible avenue for future research regards the issue of decision making per se.

The task used in this study was simple, and decision-making performance was evaluated

on the basis of a single goal. More complex decisions involving multiple goals are likely

to show more interesting dynamics of alignment, where dyads couple and decouple their

cognitive processes according to the necessity of the goal currently being attempted.

Overall, our study contributes novel insights into the dynamics of alignment across dif-

ferent modalities, relates alignment to interactivity, and elucidates how alignment and

interactivity conspire to influence task performance. This study also poses new challenges

for models of dialogue that aspire to explain alignment phenomena beyond the domain of

language processing.
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Notes

1. In this study, indiscriminate alignment refers to the repetition of arbitrary lexical

items, rather than just the repetition of task-relevant lexical items.

2. Note that this study did not explicitly examine alignment.

3. Note that we could observe a high DET or high L (the dyad aligns gaze for long

period of time), while at the same time having high ENTR (the duration of such

alignment varies substantially).

4. The crqa package has been shown to yield exactly the same results as the widely

used MATLAB package crptoolbox by Norbert Marwan.

5. We have extracted the fixation events, using the Data Viewer parsing algorithm

developed by SR Research, and kept its default parameter settings. For each data

sample, the SR parser computes velocity and acceleration in degrees of visual

angle. If a sample is faster than 30° per second, it assumes that a saccade is taking

place.

6. Note that 101 bins is smaller than the minimum length of 133 observed in the

dataset.

7. There are 384 individual scenes rather than 100 because the position of the target

was counterbalanced, and visual saliency and contextual congruency were manipu-

lated in a subset of 38 scenes, as described above.
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8. Note that we did not introduce interactions as random slopes (e.g., (0 +
Feedback:Accuracy | Dyad)), as the resulting models did not converge.

9. Identical results are obtained fitting Generalized Linear Mixed Models, using Mar-

kov Chain Monte Carlo techniques, with package MCMCglmm (Hadfield, 2010).

10. As RR varies between time series, we have re-run the analysis on L and ENTR

but after having residualized them against RR. The results hold with the only

noticeable differences being a reduction in the t-value for the interaction between

Accuracy:No-feedback (from �2.71 to �2.01) for L, and an increase in t-value
for the main effect of Minimal-feedback (from 2.01 to 2.91) for ENTR.

11. In order to make sure that these results are not a consequence of the normalization

procedure, we have computed CRQA on non-normalized sequences finding nearly

identical results. The only noticeable difference was on RR with a significant main

effect of Accuracy, whereby RR was found higher for correct versus incorrect

responses (p = .04), the No-feedback effect was now found significant (p < .01),

and the interaction between Accuracy:No-Feedback became stronger (p < .001).

12. A recent paper by Fusaroli and Tyl�en (2016) suggests using all the language pro-

duction within a trial as the unit of CRQA; this effectively offers a way of analyz-

ing self-alignment in the no-feedback and minimal-feedback conditions, and

should be explored in future work.
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Appendix

Diagonal recurrence of gaze

In this appendix, we report results from the diagonal-wise cross-recurrence profile,
which is where gaze alignment is expected to occur (around �50 normalized lags
from the diagonal). These analyses are meant to corroborate the results presented
in the main text. Diagonal-wise recurrence is mostly used in work on dialogue to
show how within a certain time frame, for example, 3 s, dyads of interlocutors align
their gaze, and especially, if there is a leading-follower pattern (e.g., Dale et al.,
2011a).

We adopt the convention of previous studies, in which positive lags indicate a
speaker-leading cross-recurrence pattern; that is, the eye movements of the speaker are
ahead of those of the listener, and negative lags indicate a listener-leading pattern. We
compute separate recurrence profiles for correct and incorrect responses, and for the three
feedback conditions. From the recurrence profile, we extract six measures characterizing
its distribution: mean recurrence, maximum recurrence, kurtosis, dispersion, central ten-
dency, and maximum lag (refer to Dale et al., 2011b, where this approach was first pro-
posed). We model each of these dependent variables as a function of Feedback and
Accuracy using LMEs (refer to Section for details about the analysis).

In Fig. A1, we visualize how attentional alignment is mediated by Feedback and
Accuracy. We find a higher mean and maximum recurrence for the No-feedback condi-
tion, especially when incorrect responses are made, as compared to the Full-dialogue
condition (refer to Table A1 for the model coefficient). Moreover, for the No-feedback
condition, we also observe a higher kurtosis and dispersion, which indicate the presence
of coordination within a small lag window. When there is no feedback and the responses
are incorrect, in contrast, such coordination is found within broader windows. When
looking at the maximum lag, we find that in the No-feedback condition, it is more likely
to happen at positive lags (i.e., a speaker-leading pattern), in line with existing literature
(e.g., Richardson & Dale, 2005). In full dialogue, there is no such a dominance. The full
interactive nature of the dialogue removes any directionality due to leader-follower roles;
and it might be that half of the time one interlocutors acts as a “speaker,” while the other
half of the time is the other that does it.

Confirming what we found with the summary measures of CRP reported in the
main text, these results suggest that the best strategy for the search task, in the
absence of the ability to exchange feedback, is for the listener to utilize the informa-
tion provided by the speaker in a complementary way, that is, to diversify their allo-
cation of visual attention. In this way, the dyad can jointly maximize the portion of
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the scenes attended to, thus increasing the likelihood of establishing correctly whether
the scenes are different or not.

Supporting Information

Additional Supporting Information may be found

online in the supporting information tab for this article:

Appendix S1. Diagonal Recurrence of Gaze.
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Fig. A1. Diagonal-wise gaze alignment (recurrence) of the dyads’ eye movements as a function of the lag

(�50), for Incorrect (blue), and Correct (red) responses in the three feedback conditions (No-feedback, Mini-

mal-feedback, Full-dialogue). Recurrence ranges from 0 to 1, with 1 being perfect alignment between speak-

ers and listeners. Lines represent means, and the shaded bands the standard errors around the means. In the

Full-dialogue condition, we observe a peak at zero probably because there is no distinction between speaker

and listener.
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