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Abstract

Communication is a multimodal phenomenon. The cognitive mechanisms supporting it are still

understudied. We explored a natural dataset of academic lectures to determine how communica-

tion modalities are used and coordinated during the presentation of complex information. Using

automated and semi-automated techniques, we extracted and analyzed, from the videos of 30

speakers, measures capturing the dynamics of their body movement, their slide change rate, and

various aspects of their speech (speech rate, articulation rate, fundamental frequency, and inten-

sity). There were consistent but statistically subtle patterns in the use of speech rate, articulation

rate, intensity, and body motion across the presentation. Principal component analysis also

revealed patterns of system-like covariation among modalities. These findings, although tentative,

do suggest that the cognitive system is integrating body, slides, and speech in a coordinated man-

ner during natural language use. Further research is needed to clarify the specific coordination pat-

terns that occur between the different modalities.

Keywords: Multimodality; Communication; Dynamic complex systems; Situated cognition;

Extended mind; Lecturing

1. Introduction

Human communication is highly multimodal. In fact, some researchers have described

it as intrinsically multimodal (e.g., Enfield, 2013; McNeill, 1992). When talking to each

other, humans do not only use words, but they also move hands and bodies, they vary

pitch, they make longer or shorter pauses, they may rush or slow down, they may whisper

or raise the voice, and they may even signal to objects in the environment when they
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become relevant to the conversation. All these different signals have been shown in previ-

ous research to carry important information that contributes to meaning in both produc-

tion and comprehension (Vigliocco, Perniss, & Vinson, 2014). Indeed, in natural

communication, the cognitive system coordinates all these behaviors simultaneously.

Yet the way in which humans control and coordinate multimodal signals during natural

language use remains an underexplored puzzle. The present work takes a step towards

filling important gaps in research on multimodality. First, as our review in the next sec-

tion suggests, most research on multimodality focuses on the use of only a few modalities

at a time, often in the context of very specific and controlled stimuli or tasks. Second,

much of the research to date focuses on how language users vary a given modality when

packaging information at the word or sentence levels. This scope overlooks the fact that

natural human communication takes place in discourse contexts that demand extended,

complex performances, beyond the sentential level. Third, most research on multimodality

examines the coordination of different signals either by applying qualitative methodolo-

gies or using quantitative methodologies on highly controlled tasks.

In this work, we address these issues in the context of a specific complex performance:

the delivery of an academic talk. We obtain automated and semi-automated multimodal

measurements from naturalistic video data and apply quantitative methods to explore the

patterns of dynamic organization and coordination among different modalities, over time.

During lecturing, as in any other communicative task, speakers have to coordinate simul-

taneously different sources of information to successfully transmit their message. Speech,

gestures, gaze, lecture slides, and so on, all convey information and need to be coordi-

nated in a way that supports both clarity and engagement, and accommodates the memory

and attentional constraints of the speaker and the audience at the same time (e.g., see

Abrahams, 2016 for review of a “big data” approach to behaviors supporting successful

presentation).

Our goal is to make an initial foray into the manner in which various multimodal sig-

nals change over the course of a complex performance, such as giving a talk. There is

considerable relevant research that precedes our present undertaking, although much of it

has focused on a single modality, or on how different modalities predict talk quality. In

the next section, we review prior research on how different modalities—specifically, body

movement, voice, and the use of visuals—are deployed during the course of a talk (Sec-

tion 1.1). Then, we present some theoretical frameworks that accommodate the coordina-

tion of multimodal signals in extended communication, including situated cognition, the

“extended mind” view, and dynamical systems (Section 1.2). Finally, we describe our

methods in more detail and state our exploratory predictions (Section 1.3).

1.1. Adapting various modalities during a complex performance

1.1.1. Body movement
In the study of discourse and pragmatics, the way language users move their bodies

has been thought to be central to their extended natural performance (Goodwin, 2000;

Selting, 2010). Gestures, for example, are tightly intertwined with speech and
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complement spoken information in a non-redundant way (McNeill, 2008). In many

approaches—including cognitive linguistics, conversation analysis, and gesture psycholin-

guistics—speech-accompanying gestures have been studied as conceptually and struc-

turally critical for discourse management (for review and analysis, see Wehling, 2018).

Gestures tend to occur in temporal alignment with pitch accents and help group-related

intonational phrases in bigger semantic units (McClave, 1994; Valbonesi et al., 2002;

Yasinnik, Renwick, & Shattuck-Hufnagel, 2004). Postural changes, for their part, accom-

pany shifts in conversational topics, as well as in conversational turns (Cassell, Nakano,

Bickmore, Sidner, & Rich, 2001).

Some studies have examined body movement specifically in the context of giving a

talk. Although several nuanced patterns are reported, there is not yet a consensus about

how body movement is implicated in such an extended performance. For example,

Batrinca, Stratou, Shapiro, Morency, and Scherer (2013) found that short presentations

were judged by experts to be most effective when speakers gestured and paced more. In

political speeches, motion energy was also shown to correlate positively with persuasive-

ness and overall effectiveness (Scherer, Layher, Kane, Neumann, & Campbell, 2012), and

the amount and type of movement was found to predict perception of diverse personality

traits, such as agreeableness and extraversion (Koppensteiner & Grammer, 2010).

Much of the work on extended communication rarely examines how speakers organize

their body over time across their complex performance, whether there are certain inter-

participant patterns, and how much individual variability there is. We address these issues

in the present work.

1.1.2. Voice
Speakers use various acoustic parameters to structure information during speech.

Acoustic measures have been shown to relate to the information focus of the sentence.

For example, in a series of studies manipulating informational focus in sentences (e.g.,

subject, verb, or object), Breen, Fedorenko, Wagner, and Gibson (2010) found that speak-

ers naturally employ higher intensity, longer duration, and higher mean F0, to highlight

the focal information. Intonational patterns also seem to narrow the search space of possi-

ble interpretations of an utterance (Wilson & Wharton, 2006). They help listeners predict

later elements of the sentence and are specially used by speakers when an ambiguous

interpretation of a sentence is possible (Snedeker & Trueswell, 2003). Prosodic bound-

aries signal higher meaning groupings across sentences that help listeners understand hier-

archical dependencies in the information (Tseng, Pin, Lee, Wang, & Chen, 2005), and

they reliably convey features of the syntactic structure of the message (Schafer, Speer,

Warren, & White, 2000). Additionally, speech rate has been also found to vary depending

on the complexity of the linguistic structures being used to convey a message (Cohen

Priva, 2017), decreasing when less frequent words and structures are used and increasing

for simpler linguistic constructions.

In much of this work, the acoustic feature of interest lies at the word or sentence

levels. These are important levels of analysis, of course. In order to build cognitive the-

ory, it is essential to understand the factors that guide the modulation of these signals at
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the word or sentential levels (e.g., frequency, contextual predictability of lexical informa-

tion, etc.), as well as the interplay of these factors. For example, Breen et al. (2010)

showed that additional factors, such as the speaker’s awareness of prosodic ambiguity in

a given information structure, influence the use of prosodic features, with speakers pro-

ducing different patterns for contrastively (vs. non-contrastively) focused elements.

In the present work, we wish to scale up the study of vocal features to broader

units of analysis in extended communication. In our domain of interest (i.e., giving a

talk) vocal features are in fact the signal most commonly examined. Various aggregate

acoustic features such as F0 range and variability, speech rate, and disfluencies were

found to be related to teacher effectiveness in short lectures (Schmidt, Andrews, &

McCutcheon, 1998). Pitch variation and speech rate were also shown to relate to per-

ceptions of liveliness during presentations (Hincks, 2005). In analysis of extended

classroom discourse, with a focus on initiation-response-feedback exchanges, Heller-

mann (2003) found that different prosodic packaging was used for different types of

feedback.

Some researchers have also analyzed speech patterns in other domains of natural lan-

guage performance, such as political speeches or news stories. Work by Hirschberg and

colleagues has shown several correlates between acoustic variables and higher level

aspects of speeches, such as discourse structure (Grosz & Hirschberg, 1992; Hirschberg

& Pierrehumbert, 1986) and a speaker’s charisma (Rosenberg & Hirschberg, 2005). The

standard deviation of acoustic measures, for example, predicts higher charisma in political

speeches (Rosenberg & Hirschberg, 2005; see also Shim et al., 2015). Such cues may

also serve as strong markers of genre or interactive style, along with other cues such as

lexical features (Hirschberg, 2000; Jurafsky, Ranganath, & McFarland, 2009).

1.1.3. Visuals
PowerPoint slides have become the norm in scientific presentations. Despite this, few

studies have analyzed the dynamics of talk delivery using slides. In some domains, such

as educational research and communication, the use of slides and visuals has been a criti-

cal subject of study (for reviews, see Levasseur & Kanan Sawyer, 2006; Vyas & Sharma,

2014). Such research shows that fewer words on slides improve presentation effectiveness

(Chen, Leong, Feng, & Lee, 2014), and that the dynamic elements of such visuals are an

attractive feature (Moulton, T€urkay, & Kosslyn, 2017).

The manner in which these slides are delivered, however, is rarely a focal point of

analysis. Pacing and relative rhythm with vocal and bodily modalities are unexplored.

Some survey-based methods asking presenters what they do in their talks suggests consid-

erable individual variability (Brock & Joglekar, 2011).

1.1.4. Multimodal coordination of signals
It is important to note again that considerable prior research supports our position that

these various signals would be integrated during extended communication. In the case of

co-speech gesture, evidence for this integration is plentiful (McNeill, 2000, 2008). Ges-

ture has been shown to complement spoken information in speakers’ narrations (Cassell
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& McNeill, 1991; Melinger & Levelt, 2004) and to aid listeners in comprehension (Cas-

sell, McNeill, & McCullough, 1999).

In the context of teaching, Pozzer-Ardenghi and Roth (2004, 2007), using a qualitative

approach, found that the gestures and body orientation of instructors during lecture con-

veyed meaning that amplified and supplemented what was being said by drawing atten-

tion to important details. This evidence was taken to be consistent with the view that

words, gestures, and visual aids come together to form a holistic meaning unit during the

communicative act. Recent quantitative evidence supports the notion that expressiveness

during speech connects both prosody and body motion (Pouw & Dixon, 2018; Voigt,

Podesva, & Jurafsky, 2014).

1.2. Theoretical accounts for multimodal coordination

In this section we review some theoretical accounts that we consider useful for charac-

terizing the coordination of multimodal signals in extended discourse. As our review so

far suggests, speakers coordinate an array of multimodal cues, including external tools,

during lecturing and other discourse domains.

From a situated cognition perspective, the use of multimodal signals, slides included,

can be beneficial for cognition. Using external representations when thinking facilitates

complex thought by transforming mental computation into perception and action and

leveraging the advantages of these two processes. External representations (the slides in

this case) also serve as shareable objects of thought that offer a common and persistent

referent for different people to attend to and reason with at the same time (Kirsh, 2010).

The slides, then, can help the speaker and the audience reduce the cognitive load associ-

ated with conveying or understanding the message by offering a shared external represen-

tation that supports thinking.

From a more radical point of view, the slides can even be said to become a constitu-

tive part of the speaker’s and the audience’s cognitive systems. Such a view is known as

the extended mind hypothesis. According to this theory, first outlined by Clark and Chal-

mers (1998), the cognitive system and its processes are not only “internal” but also

involve processes that extend outside the head into artifacts and the environment. In this

view, the tools we use while thinking function as cognitive aids that, by sharing some of

the representational load of the task at hand, become active elements of the cognitive sys-

tem. As such, these tools need to be included in any explanatory account of that system.

Classical work within this theoretical framework has offered extensive descriptive evi-

dence from complex tasks such as operating airplanes (Hutchins, 1995) or navigating the

open sea without instruments (Hutchins, 1983). Researchers in this tradition argue that it

is necessary to attend to the informational capabilities of the sociotechnical system as a

whole (including person and tools), and not just to the cognitive abilities of the individual

minds operating the machines.

In the case of interpersonal communication, Clark (2003, 2005) proposes that to under-

stand meaning and communication we ought also to extend the window of analysis to

include other material elements besides words. The gestures we make, the way we place
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ourselves and the objects in the space with respect to other elements in the situation, and

the specific moment at which we do it serve communicative functions of their own. Sig-

naling techniques, such as pointing and placing, among others, facilitate coordination dur-

ing interpersonal communication and ground the speakers’ message to the material world.

In line with this proposal, Hutchins and Palen (1997) showed that to understand how

meaning is created and communicated within a system, it is necessary to attend to all the

modalities involved. The authors found that aircrew members engaging in a problem-sol-

ving simulation task communicated complex messages by coordinating their words, their

spatial orientation, and the organization of their gestures in relation to the tools in the

environment. Each of the modalities—external tools included—participated in the cre-

ation of the message, which could only be fully understood when analyzing the different

modalities in relation to one another.

Besides being multimodal, communication unfolds over time in an organized way.

Dynamical systems approaches to the understanding of the mind offer novel method-

ologies to quantitatively characterize the dynamics of a system (i.e., the behavior of

the system over time) and measure coordination between the elements that produce

them (Richardson, Dale, & Marsh, 2014). These approaches conceptualize cognitive

processes as emergent phenomena resulting from the multiplicative interaction of sim-

pler interdependent elements and processes (McClelland et al., 2010). The cumulative

effects of the interactions between elements creates patterns of organization that can

be measured at different timescales of the system’s behavior (Kello et al., 2010). Self-

organizing systems also tend to exhibit “synergies” between the elements that com-

prise them, such that multiple parts of the system come to operate together as a func-

tional whole, exhibiting patterns of coordination and compensation that respond

closely to the environmental constraints and the task demands (Kelso, 2009; Riley,

Richardson, Shockley, & Ramenzoni, 2011; Shockley, Richardson, & Dale, 2009). In

dialogue, interactional routines like turn taking, for example, seem to emerge from the

low-level information of multiple channels. The words and syntactic structures being

used (de Ruiter, Mitterer, & Enfield, 2006), the prosodic boundaries of intonational

phrases (B€ogels & Torreira, 2015), postural changes (Cassell et al., 2001), and the

patterns of gaze orientation (Rossano, 2013) all seem to play a role on the coordi-

nated dance of turn taking. Speech rate also seems to help with turn-ending predic-

tion, as it may mediate the synchronization of conversational pace between partners

(Wilson & Wilson, 2005).

Examining the way behaviors are temporally organized, independently and in relation

to each other, offers a window into the characteristics of the system that is producing

them. Studying multimodal communication within this framework allows us to explore

the structure and coordination patterns of the cognitive system during communication in

general, and during the presentation of complex information, in particular. Additionally,

this approach allows us to expand on the situated cognition literature by making the first

steps toward quantitatively exploring the way in which an extended cognitive system

coordinates its parts. If extended cognitive systems do in fact emerge from the interaction

of a person and her tools, resulting in interdependent systems, we should find evidence of
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structure in those systems’ behavior across different time scales, and patterns of coordina-

tion between their behaviors.

1.3. The present study

In this work, we use a natural dataset of academic lectures to conduct an exploratory

analysis of the temporal structure of multimodal behaviors during this complex extended

performance. Analytically, we use a combination of automated and semi-automated meth-

ods. As our review suggests, the extant literature typically examines the coordination of

modalities either by applying qualitative methodologies (e.g., Hutchins & Palen, 1997) or

using quantitative methodologies on highly controlled tasks (e.g., Valbonesi et al., 2002).

Some exceptions include work that has used motion tracking or computer vision object-

tracking to capture various features of the speakers’ body movement (Chen et al., 2014),

and work that has used automation to assess public speaking skills (Batrinca et al., 2013;

Scherer et al., 2012) and to explore multimodal coordination in short sentences (Voigt

et al., 2014). But even so, there remains a paucity of research on the structure of these

signals as they vary in time.

Automated and semi-automated methods are useful tools for studying extended com-

munication. Uncovering organizational patterns during communication requires large

amounts of data that are costly to obtain using the traditional hand-coding methods com-

mon to psychology. The use of extensive videos and automated techniques for analyzing

them allows us to frequently sample behaviors of interest with reduced effort and mini-

mal time costs, while still achieving sufficient data quality. Frame-differencing methods

are a useful application of computer vision to measure the movement in a video by quan-

tifying the amount of pixel change across consecutive video-frames (see Paxton & Dale,

2013 for a review). When applied to videos in which the observed movement is coming

from an empirically relevant source, or in which this source can be easily isolated, these

methods offer a good proxy for variables of psychological interest, such as body move-

ment and coarse gestures (see Pouw, Trujillo, & Dixon, 2018 for a comparison with

motion tracking methods). Similarly, software like Praat (Boersma & Weenink, 2010)

offers a broad set of tools to analyze and easily quantify diverse acoustic properties of

audio signals, such as the intensity, fundamental frequency, formants, and power spec-

trum. This allows rapid access to prosodic information that contains clues to interesting

psychological components of discourse.

In the present work, we are interested in addressing two main questions: First,

how do body, slide transitions, and prosodic components of speech—such as pitch,

rate, and amplitude—change during the development of a talk as time advances and

constraints change? And secondly, how are the changes in these different modalities

dynamically related to each other? Are there covariation patterns between them? We

focus on a segmentation that is relatively coarse-grained—analyzing subsets of behav-

ior between 4 and 8 min in duration. The purpose is to find if particular periods of

time in the extended performance enjoy a kind of highlighting in the multimodal

signals we analyze.
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Motivated by our review above, there are a number of possible patterns which we

might observe here. Though we take an exploratory approach, it is instructive to consider

these possibilities. One possibility is that the modalities show a linear increase over time:

For example, speakers could show more irregular movements as their social motivations

change during the talk (Koppensteiner & Grammer, 2010), increasing their overall body

movement. Similarly, speakers could increase their slide rate towards the end of their

talks as they run out of time to cover the material. Conversely, a second possibility is that

the modalities show a linear decrease over time: Speakers attenuate their gestures (Galati

& Brennan, 2014; Hoetjes, Koolen, Goudbeek, Krahmer, & Swerts, 2015) and their artic-

ulation (Galati & Brennan, 2010) as they build common ground with their audience. Such

adaptation would be consistent with a lowering of voice signals and body movement

across a presentation. Speech rate may also decrease over time as people get into more

complex parts of their talks that require more complex linguistic constructions (Cohen

Priva, 2017). A third possibility is that the modalities show a U-shaped pattern: If the

middle of the talk carried most of the new information, speakers might utilize increased

vocal and bodily expressiveness (Galati & Brennan, 2010) to elaborate the novel concepts

at this point of the talk, leading to an inverted U pattern. All these described patterns sug-

gest that some kind of packaging may be dependent upon the region of time during an

extended performance. An additional possibility, however, is that we fail to find any

structure over time in these signals. Such a null effect might suggest that local effects of

prosodic or bodily variation are sufficient to explain performance within this circum-

scribed discourse context. In that case, variation may be detectable only at these lower

levels (e.g., when considering words or sentences).

Beyond considering each modality separately, we are also interested in the covariation

of these multimodal signals to tap into their interdependence and synergies as components

of the same system. We do not posit any hypotheses in advance, as there are several pos-

sibilities. For example, voice and body movement may pattern in a parallel, reinforcing

manner (e.g., Voigt et al., 2014), or it may instead pattern in a more complementary fash-

ion. The use of slides may also bear different relationships with the other signals—for

example, an increase in the use of slides may be associated with a decrease in some sig-

nal (e.g., reduced body movement) but increase in another (e.g., faster speech rate). We

examine the various possibilities in the systematic covariation of these multimodal signals

by assessing their “compressibility” through principal component analysis (PCA).

2. Method

2.1. Data

The video recordings of 30 lectures given in the Cognitive and Information Sciences

seminar series at UC Merced were analyzed. This seminar series covers a broad range of

topics in Cognitive Science, and recordings of its talks are publicly available in You-

Tube1 and Vimeo.2 Each talk is typically an hour long followed by a 30-min (on average)
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Q&A session, which was not included in the recording. Each lecture was videotaped from

a fixed point within the audience, with the camera set up on a tripod. The camera was

usually let to run without any modifications to its focus or position for the length of the

talk. This made the videos suitable for meaningful analysis with frame-differencing tech-

niques described in the next section.

The recordings included in this study were selected using the following criteria to permit

automated video and audio analyses: (a) the camera was fixed in the same position and focus

during the whole lecture, (b) the speaker and the slides were always visible in the video, (c)

the heads of audience members did not occlude the speaker from the camera view at any

point, (d) there was low overlap between the speaker and the slides (determined through

visual inspection), and (e) the quality of the audio track was sufficient (i.e., low background

noise, no echo) to perform automated analysis in the speech signals.

The resulting sample of 30 videos used in the study included talks by 8 females and

22 males, from various fields, including philosophy, psychology, neuroscience, linguistics,

computer science, and math. The sample also involved participants from diverse locations

within the United States: Of the 30 speakers, 15 were affiliated with institutions on the

West Coast of the United States, and 15 with institutions in other parts of the country.

The presentations included in the analysis were between 34.6 and 81.3 min long, with a

mean duration of 56.45 min (SD = 10.21 min).

2.2. Instruments and procedure

2.2.1. Video analysis
The videos were downloaded from YouTube and Vimeo in the best possible quality

using the iSkysoft Video Downloader (i.e., 1080p for YouTube videos, and 360p for

Vimeo videos). These were then converted to AVI format using the Any Video Converter

software. The Optical Flow Analyzer (Barbosa, Yehia, & Vatikiotis-Bateson, 2008) was

used to conduct the frame-by-frame analysis. This software compares the locations of the

pixels in the current frame with the location of the pixels in the previous frame of the

video. It calculates the magnitude and direction of the displacement of every pixel within

some defined area of interest and, using the frame sampling rate, produces a velocity vec-

tor for each of the pixels in that area. The Optical Flow Analyzer then sums all the indi-

vidual vectors coming from each pixel in the delimited area and returns a vector

reflecting the overall pixel change within each area of interest for every frame of the

video (25 frames/s). Two main areas of interest were defined for each video (see Fig. 1):

one demarcating the area in which the speaker was moving during most of the lecture;

and the other one demarcating the area occupied by the slides. The areas of interest were

placed in a way that avoided any overlap between them to make sure that any pixel

change detected in any of them, presumably corresponded only to the movement of the

object they were enclosing (i.e., either the speaker or the slides).

We faced two general issues in using the Flow Analyzer technique with these videos.

First, occasionally, the speaker would step in front of his or her slides. We carefully
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selected videos which minimized this artifact, though there remained some of these

instances in the videos. However, this occasional overlap was neither captured in the

speaker’s nor the slides’ movement data: The areas of interest were placed so that they

did not include regions where there was frequent overlap between the speaker’s move-

ment and the slides (see Fig. 1). Therefore, the area corresponding to the slides usually

included only the top portion of the slides to avoid capturing any of the speaker’s move-

ment (e.g., when walking in front of the slides) in the slides’ area of interest. This strat-

egy allowed us to avoid erroneously registering the speaker’s movement as slide

movement and vice versa. However, it also resulted in data loss from the lower parts of

the slides. This, as discussed below, makes our analysis less sensitive to slide animations

(e.g., the use of animated bullet points) in comparison to slide transitions (i.e., changes

from one slide to the next). Second, slide changes sometimes changed the illumination of

the presenter’s body, which could in turn briefly cause a change in pixels, leading to a

punctate moment of spurious body movement. In order to ensure that the algorithm was

producing coherent results, untainted by these artifacts, we carried out a validation analy-

sis that is presented in a later section.

For each video, we divided each time series obtained from the Optical Flow Analyzer

into 10 windows of equal size (each window representing 10% of the duration of the

Fig. 1. Screenshot of the Optical Flow Analyzer showing the placement of the two areas of interest in one of

the videos. Note that the areas are placed in a way that avoids information from the slides being captured

within the speaker’s area, as well as movement from the speaker being captured within the slides’ area.
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presentation in question—the duration of the window varied depending on the length of

the talk) and got the aggregated measures of the speaker movement, the slide changes,

and the prosodic components of the speech signal for each of the windows. This aggrega-

tion helps overcome the noise that may be present at finer-grained timescales: If subtle

fluctuations in pixel change occurred from the slides, or from the speaker moving in front

of the slides, these would only count as brief noise when averaging over several minutes
of the presentation. Moreover, segmenting the signals into a number of windows as

opposed to a number of minutes allowed us to align and compare pragmatically similar

discourse segments of the talks (e.g., introduction to the topic, presentation of research

findings, concluding remarks) regardless of the talk’s exact duration. Two variables were

obtained from the video analysis using R (R Core Team, 2018): body movement and

slide change.3

2.2.1.1. Body movement: We obtained the mean pixel change within the speaker’s area

of interest for each window of each talk.

2.2.1.2. Slide change rate: As the slides change discretely, they produce big spikes of

pixel change observed in the output from the Optical Flow Analyzer. We used an auto-

mated algorithm to find the spikes of pixel change in the slides signal. For this, we

defined a threshold for each talk and identified the times in which big changes occurred.

A minimum of 10 s between spikes was set to avoid counting multiple spikes coming

from videos in the presentation, or other noise sources to be counted as slide changes. To

determine the threshold, we plotted the standardized signal and determined visually the

number of SDs required to minimize the amount of noise (i.e., constant small amounts of

pixel change) and maximize the number of spikes (i.e., sporadic big amounts of pixel

change) being captured. To validate the algorithm, we hand coded the slide changes (at-

tending also to animations within the same slide) of three talks and compared these time

series to the ones obtained using the algorithm. We calculated two common signal pro-

cessing measures to evaluate the algorithm’s performance: precision, which captures the

ratio of correctly identified events versus the total number of events found by the algo-

rithm; and recall, which captures the ratio of correctly identified events versus the total

number of events actually present in the signal. When counting slide transitions (i.e., full

slide changes) and slide animations (i.e., small changes within the same slide) as a slide

change, the average precision and recall rates were 0.849 and 0.421, respectively. When

considering only slide transitions as a slide change, the average precision and recall rates

were 0.829 and 0.662, respectively, suggesting that the algorithm was especially success-

ful at capturing full changes in the slides. For our analyses, we used the event count

within each time window determined by the algorithm and computed the rate of slide

change per minute.

2.2.1.3. Validation of video analysis: To validate the data obtained with the Optical

Flow Analyzer, we selected and hand coded 200 5-s segments of five randomly

selected videos (40 segments from each). The segments from each video were chosen
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using an algorithm in R that identified and selected 10 5-s high body movement win-

dows (i.e., windows with high mean and low SD pixel change from the speaker area),

10 5-s low body movement windows (i.e., windows with low mean and low SD pixel

change from the speaker area), 10 5-s high slide change windows (i.e., windows with

high mean and high SD pixel change from the slides area), and 10 5-s low slide

change windows (i.e., windows with low mean and low SD pixel change from the

slides area).

All three co-authors coded each of these segments for amount of body movement

(on a scale from 1-low movement to 7-high movement) and presence of slide changes

(on a binary 1-Change, 0-No change scale). The Krippendorff’s alpha (Hayes & Krip-

pendorff, 2007; R package: Gamer, Lemon, & Fellows, 2012) indicates there was good

interrater reliability for both the body movement judgments (a = 0.768) and the slide

change judgments (a = 0.964). To dichotomize the body movement variable (making it

comparable to the information we used to select the segments: high or low movement),

we calculated the mean movement out of the three raters’ scores and performed a med-

ian split on the resulting values. Everything over and equal to the median movement

rating was considered high movement, and everything below, as low movement. The

comparison of the software’s classification against the human raters’ classification

showed that (a) 46 of the 50 high body movement segments were judged to contain

high speaker movement, (b) 47 of the 50 low body movement segments were judged to

contain low speaker movement, (c) 41 of the 50 high slide change segments were

judged to contain a slide change, and (d) 48 of the 50 low slide change segments were

judged to contain no slide changes.

2.2.2. Audio analysis
The speech signals were extracted from the videos, filtered, and segmented using

Audacity. The noise reduction feature with the default settings was used to reduce the

background noise in the sound waves, and the regular interval labeling feature was used

to segment the files in 10 parts. Praat (Boersma & Weenink, 2010) was used to calculate

the fundamental frequency, speech rate, articulation rate, and intensity of every speech

excerpt.

2.2.2.1. Fundamental frequency: The fundamental frequency was computed using the

autocorrelation method (“To pitch” feature) in Praat. The pitch floor and ceiling were set

to 75 Hz and 400 Hz, respectively, for male speakers, and to 100 Hz and 500 Hz for

female speakers, following the recommendations in the Praat manual. The male ceiling

was set 100 Hz higher than recommended because a good number of the male speakers

used perceptually higher pitches when talking. The mean F0 for every time window was

obtained. This measure was preferred over the range of F0 because the automated algo-

rithm in Praat produces occasional spurious overestimations and underestimations of the

pitch. While these occasional errors in the estimation have serious effects on the estima-

tion of the range, they are less relevant for the calculation of the mean, making the latter

a better measure.
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2.2.2.2. Speech and articulation rates: The speech and articulation rates were calculated

using De Jong and Wempe’s (2009) Praat script. This script uses the peaks in the inten-

sity contour to identify syllable nuclei. Speech rate is calculated as the number of sylla-

bles divided by the total duration of the signal; and articulation rate as the number of

syllables divided by the duration of the voiced parts of the signal. The silence threshold

was set to �26 dB, the minimum pause duration to 3 s, and the minimum dip between

intensity peaks to 4 dB, given that we are working with noisy signals.

To validate the data, we randomly selected 100 30-s segments from five of the videos

(20 segments each) and counted the number of syllables on each excerpt. The correlation

between our syllable count and the algorithm’s was 0.63.

2.2.2.3. Intensity: We used the “To intensity” feature of the Praat software to determine

the intensity contours. The default settings were utilized. The mean intensity for each

time window was calculated using the “energy” averaging method.

2.3. Data analysis

We conducted two separate analyses on these multimodal signals. First, we tested

whether speakers consistently vary these behaviors across their talk. This first analysis

tested each modality separately, independently of the others. We were interested in

uncovering whether the cognitive system responds differently in various moments of

the presentation as it advances. For example, do speakers begin with rapid speech and

slow slides changes? And do they end on slower articulation and quick sequences of

slide changes as time limitations become more pressing? Because we were interested

in both linear and nonlinear patterns over time (see below), we built mixed-effects

models for each of the dependent variables (pitch, body movement, etc.) using time

window (1–10) both as a linear and a quadratic predictor. To control for the effect of

between-subject variation in the observed trends, we introduced speaker identity as a

random effect. A maximal random effect structure, with a random intercept and slope

for speaker identity, was specified in the model following the recommendations of

Barr, Levy, Scheepers, and Tily (2013) and Mirman (2014). The models were built in

R using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015), and their p-

values were calculated using the lmerTest package (Kuznetsova, Brockhoff, & Chris-

tensen, 2017).

The second analysis, as foreshadowed in the introduction, explored the covariation

among these behavioral, multimodal signals in order to capture their interdependence. If

the cognitive system is coordinating these signals together, as interdependent parts, we

should be able to substantiate these interactions through a quantitative method. As a first

step in this direction, we used PCA, a dimensionality reduction technique, to explore if

these multimodal measures are correlated and how “compressible” they are.

Though we used PCA, there are many dimensionality reduction techniques to choose

from (Van der Maaten, Postma, & Van Den Herik, 2009). Given the relatively sparse data

here (300 rows) and our exploratory purpose, we chose PCA as it is among the simplest
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—it simply performs orthogonal rotation of our observed data. We used the prcomp (R

Core Team, 2018) function in R, from the core “stats” package. For our purposes, we

took the unrotated output of the prcomp function. Importantly, rotation would have no

effect on the observed compression of our variables, only their interpretation. We return

to this issue in the General Discussion, where we discuss future directions for dimension-

ality reduction.

The prcomp function performs PCA using singular value decomposition. Variables

were neither centered nor scaled beyond our own transformations (as described below).

We interpret the variance accounted for by a given component as its corresponding eigen-

value.

Our primary goal is to determine whether there is a compression among the modalities

that we measured. In this PCA approach here, this would appear as a smaller number of

components accounting for a disproportionate percentage of the variance in these data.

There are many approaches to determining this in PCA, such as a bend in a scree plot of

eigenvalues or cumulative variance with a cut-off. Here we report eigenvalues above a

value of 1.0, indicating that a component is accounting for more variance relative to the

original standardized data. We also report percentage of variance accounted for, expecting

that a disproportionate variance will be accounted for by fewer components than the

dimensionality of the observed data.

3. Results

3.1. Patterns of variation of the modalities over time

The first goal of this study was to explore and describe the ways in which the different

modalities are organized and change as the presentation progresses and the constraints the

speaker has to face change. Fig. 2 shows the average patterns of variation over time for

each dependent measure. Most variables, with the exception of slide rate, exhibit a decreas-

ing trend over time. In the case of body movement (Fig. 2, top left), speech rate (Fig. 2,

middle left), and intensity (Fig. 2, bottom left), this decrement appears to be principally lin-

ear. However, in the last segment of the intensity time series (Fig. 2, bottom left) a sudden

drop is visible. In the time series for articulation rate (Fig. 2, middle right) an inverted U-

shaped pattern is observed. These two characteristics of the observed patterns suggest that

nonlinear components could also be necessary to capture the distribution of the data.

Table 1 shows the raw and standardized coefficients for the mixed regression models

of each dependent variable as a linear or quadratic function of time. We used linear

mixed effects models with maximal nested random effects to help avoid false positives

for each modality, by factoring in a more complex nested model of each individual

speaker. Despite that, the fact that we tested multiple models—for the several modalities–
does leave the possibility of Type I error lingering. The overall purpose of this paper was

to explore these patterns in time, and so future work should follow up by expanding the

available dataset in this domain and others, and perhaps expand model complexity (e.g.,
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including more nonlinear terms, individual differences, etc.). This may help fine-tune

which of our observed effects are real, and which effects we may have missed (Type II

error).

Fig. 2. Overall patterns of variation over time for the different modalities of information: body movement

(top left), slide change rate (top right), speech rate (middle left), articulation rate (middle right), intensity

(bottom left), and fundamental frequency (bottom right). The time windows correspond to equally long seg-

ments of the talks, each comprising 10% of the duration of them. Error bars indicate SE of the mean and are

corrected by within-subject measurements.
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The t-tests confirm our observations above, indicating a statistically significant linear

effect of time on speech rate (p = .016) and intensity (p = .016), and a marginally signifi-

cant effect (p = .054) on body movement. The negative sign of the slope for all variables

suggests that the rate and intensity of speech, and the amount of movement decrease as

the presentation advances (see Fig. 2: middle left, bottom left, and top left).

Significant effects for the quadratic component of the regression models were found

for intensity (p = .023) and articulation rate (p = .032). In the case of intensity, this

suggests that the decrease in the amplitude of the signal over time, observed in the

bottom left panel of Fig. 2, is not completely linear: Intensity decreases at a some-

what regular pace, and it dramatically drops off at the last window. In the case of

articulation rate, the significant quadratic term suggests that the number of syllables

pronounced during actual voiced time increases as speakers go into the middle section

of the talk and decreases again as they move into the final segments (see Fig. 2, mid-

dle right).

The effects of time on the different variables are modest, as observed by the small beta

coefficients in Table 1. This suggests that the specific patterns we have examined may be

insufficient to fully describe the ways in which the different modalities change during

these extended periods of time. More specifically, individual differences may play an

important role in the observed trends. In fact, an initial exploration shows that different

individuals do seem to be quite variable in their organization of the modalities. For exam-

ple, speaker 6 and speaker 29, whose body movement and speech rate data are presented

in Fig. 3 (left and right, respectively), show completely opposite patterns for both of

these modalities. Speaker 6’s body movement decreases and her speech rate increases as

the lecture advances, whereas speaker 29’s body movement increases and her speech rate

decreases over time. The high variability of the individual speakers’ patterns may be

causing the random effect structure in the model to take up most of the variance, which

in turn may be reducing the contribution of time as a fixed effect.

Table 1

Coefficients for the linear and quadratic mixed-effects models

DV(units) Predictor B b SE t p

Body movement (pixel change) t �0.0023 �0.026 0.013 �2.00 .054

t2 �0.00039 �0.0045 0.0031 �1.41 .17

Slide rate (slides/min) t 0.012 0.019 0.017 1.13 .27

t2 0.0023 0.0037 0.0070 0.53 .59

Speech rate (syll/s total) t �0.014 �0.034 0.013 �2.57 .016
t2 �0.00017 �0.00042 0.0037 �0.11 .91

Articulation rate (syll/s voiced) t �0.0010 �0.0019 0.013 �0.14 .89

t2 �0.0036 �0.0069 0.0030 �2.26 .032
F0 (Hz) t �0.19 �0.0053 0.0067 �0.80 .43

t2 �0.080 �0.0023 0.0018 �1.24 .22

Intensity (dB) t �0.054 �0.014 0.0056 �2.55 .016
t2 �0.0087 �0.0023 0.00096 �2.40 .023

Note. The reported SEs correspond to the models using the standardized data. p < .05 are shown in bold.
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3.2. Covariation between modalities

The second goal of this study was to determine whether there were “system-like” prop-

erties in the speakers’ multimodal behaviors—that is, to test if the different modalities

varied in a coordinated way. We combined all the behavioral measurements, window-by-

window, in one data matrix. Each of 300 rows in this matrix represented a speaker

(N = 30) in a given 1/10th window, with each column reflecting one of the six modali-

ties, as measured above. We used PCA to examine whether a small number of dimen-

sions (components), discovered through the spectral decomposition of the data matrix,

would adequately describe multimodal performance in a “compressible” manner. We

applied PCA to two different covariation matrices: one standardizing the data across the

whole sample, and the other standardizing the data within subject.

The standardization across the whole sample highlights the differences between speak-
ers by scoring their performance on different variables relative to the group mean; thus,

each speaker’s score on a given variable would be high or low relative to the other speak-

ers. This standardization procedure allowed us to ask questions about the covariation pat-

terns in the distribution of “high” and “low” scores across the different variables. For

example, do people who move more tend to have more slides and speak faster? Or, in

contrast, do those who move more have fewer slides?

Table 2 shows the loadings of this PCA solution, as well as the eigenvalues for each

of the factors. The first three components account for approximately 75% of the variance,

have eigenvalues >1 (i.e., accounting for more variance than any single original variable),

and suggest the existence of patterns in the strategies that different speakers adopt when

Fig. 3. Body movement (left) and speech rate (right) data for speaker 6 and speaker 29.The subjects show

opposite patterns for each of the variables and exemplify the types of unique strategies that different speakers

exhibit during their talks. Individual differences in the use of each modality might have a role in explaining

the small effect of time in the mixed-effects models.
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giving a talk. The first component accounts for 34.63% of the variance and involves a

mixture of four variables: body movement, speech rate, articulation rate, and intensity.

All these variables load positively on this component (they all have the same sign), sug-

gesting that speakers who tend to speak faster also tend to speak louder and move more.

The second component accounts for 20.94% of the variance and contains the variation of

three variables: body movement, slide rate, and intensity. The signs of the loadings sug-

gest that speakers who have more slide changes also tend to move more and speak more

softly. The third component accounts for 17.33% of the variance and combines the varia-

tion of two variables: fundamental frequency and intensity. The signs of the loadings sug-

gest that speakers who have a higher pitch tend to speak more softly.4

In a second exploration, we wished to investigate how modalities vary across the talk ir-
respective of the overall magnitude of the behavioral variables. In other words, if a speaker

increases her body movement, does she also increase her slide changes? To explore this, we

conducted a PCA on z-scores computed within speakers. In this standardization procedure,

we used each speaker’s individual mean for each variable to standardize their score for each

of the time windows of that variable. This way of standardizing highlights the differences

between time windows, allowing us to ask questions about the way the different variables

co-vary at different moments in time as they go above or below the speaker’s mean.

Table 3 shows the loadings and eigenvalues of this PCA solution. Only the first com-

ponent has an eigenvalue >1, and it accounts for 29% of the variance. This solution is

more difficult to interpret than the first PCA solution, as it shows less compressibility of

the measures, as evidenced by the low percentage of variance accounted by the only

component with an eigenvalue >1. Nevertheless, we attempt to unpack what the first

component’s loadings suggest. The first component (29% of the variance) mainly includes

variance from speech rate, intensity, articulation rate, and F0. This suggests that as speak-

ers increase their speech rate, they also tend to increase their pitch and their loudness.

In general, the covariation patterns observed between the modalities suggest there

could be system-like synergies in how different modalities vary over time. However, it is

difficult to uncover their specific patterns of covariation, since some of the dependent

Table 2

Principal component analysis solution standardizing across the sample

DV C1 C2 C3 C4 C5 C6

Body movement 0.22 0.66 �0.01 0.72 �0.05 �0.01

Slide rate �0.07 0.74 0.09 �0.64 0.15 0.07

Speech rate 0.61 �0.08 �0.09 �0.12 �0.15 0.76

Articulation rate 0.57 0.02 �0.03 �0.23 �0.50 �0.60

F0 0.06 0.04 �0.95 �0.05 0.28 �0.12

Intensity 0.49 �0.12 0.28 0.01 0.79 �0.22

Eigenvalues 2.07 1.25 1.03 0.68 0.62 0.32

Percent r2 34.6 20.9 17.3 11.4 10.4 5.3

Bold indicates the eigenvalues of the components that are greater than 1, their explained variance, and the

loadings of those components that are greater than 0.1.
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variables load together in more than one component but exhibit contradictory relation-

ships across components (see for example in Table 3 the loadings of body movement and

articulation rate in C1 and C2).

Using orthogonal data rotation yielded only subtle features of compression. Probing

further into the results of this PCA solution may require a larger sample size. Future

explorations of the data may involve using more fine-grained time windows or including

other relevant variables for the behavior under study (e.g., informational complexity of

the information being conveyed). In addition, it may be useful to explore other dimen-

sional reduction techniques (Van der Maaten et al., 2009).

4. Discussion

This study explored how different modalities of communication are used by speakers

during the delivery of an academic talk, and the relationships between those modalities.

In regards to our first objective—to explore how different modalities are organized and

change over the course of the lecture—our findings suggest some small but significant

effects. Of the 12 coefficients we tested (2 fixed effects per 6 modalities), four showed

significant but small effects.5 In line with a dynamical systems account, time predicted

significantly the speakers’ speech rate, articulation rate, intensity, and marginally the

speakers’ body movement. As the presentation advanced, speakers reduced their volume,

their speaking rate, and their movement. They also had higher articulation rates in the

middle of the talk than at the beginning.

A simple and quite obvious explanation for this general decrease across modalities is a

fatigue effect, given the speakers’ sustained performance over the 1-hr lecture. However,

another, perhaps more interesting possibility is that the observed trends might be related

to an increase in informational complexity as the talk advances. As more complex or less

established information is reached (e.g., the results or conclusions of the presented

research), it is reasonable to expect presenters to speak more slowly, make longer pauses,

Table 3

Principal component analysis solution standardizing within subject

DV C1 C2 C3 C4 C5 C6

Body movement �0.10 0.79 �0.22 �0.08 �0.54 0.10

Slide rate �0.09 0.31 0.93 0.17 0.07 0.00

Speech rate �0.53 �0.26 �0.04 0.51 �0.24 0.58

Articulation rate �0.50 �0.33 0.16 �0.34 �0.50 �0.50

F0 �0.46 0.12 0.00 �0.66 0.43 0.39

Intensity �0.49 0.28 �0.25 0.39 0.46 �0.50

Eigenvalues 1.74 0.99 0.89 0.79 0.70 0.30

Percent r2 29.0 16.6 14.8 13.2 11.7 5.0

Bold indicates the eigenvalues of the components that are greater than 1, their explained variance, and the

loadings of those components that are greater than 0.1.
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and decrease their volume as a result of uncertainty or difficulty in conveying the infor-

mation. Consistent with this possibility, speech rate has been shown to depend on infor-

mational complexity, decreasing as complexity increases (Cohen Priva, 2017). Testing

this possibility would require further exploration of the data. Future analyses of datasets

of this kind may involve classifying or quantifying the slides’ content in order to gauge

the complexity of the information presented at each time window.

The magnitude of the effect sizes resulting from the regression analysis suggests that

the dependency of the different modalities on time is limited. As we have mentioned

before, this could reflect the importance of individual differences. It is possible that

speakers vary widely in their use of the different modalities during the talk, such that the

unique impact of time on each speaker (captured by the maximal random effect structure)

accounts for most of the variance in the models, obfuscating the impact of time on indi-

vidual modalities. Some initial explorations of the individual patterns of the speakers

seem to support this possibility, as illustrated in Fig. 3.

We also explored model comparisons between models with different random effect

structures to select those with the best fit, following a reviewer’s suggestion. Ultimately,

we decided to continue reporting the models with the maximal random effect structure

here for two reasons. First, specifying the maximal random effect structure is a more con-

servative approach that reduces the possibility of Type I error (Barr et al., 2013). Second,

in light of the individual differences we have noted, we wished to control for the effects

of individual subjects on the general trend (thus maintaining the maximal random effect

structure). Model selection could be most valuable when having to specify more complex

models, with additional parameters. In future work, such models could include the slide

content or informational complexity, or the state of the other modalities at current or pre-

vious time steps. The best fitting of these models could provide insight about the specific

variables that predict the organization and change of communication modalities during

lectures. Doing model selection for the parameters of the random effect structure could

also be a good way of testing for individual differences: The change in R-squared and in

model fit indices between a maximal model and one without a random slope could illus-

trate the contribution of individual trends to the change of modalities over time.

We analyzed relatively large bin sizes across time, averaging measurements into 10

temporal bins. This methodological choice enabled us to stabilize behavioral measure-

ments (e.g., reduce noise from small fluctuations in pixel change by averaging over sev-

eral minutes) and to compare pragmatically similar discourse segments across speakers

(e.g., the dip in many of the behavioral signals at the conclusion of the talk, as illustrated

in Fig. 2, or a peak in slide change rate in window 8, top-right panel of Fig. 2).6 How-

ever, our choice of relatively long time windows may have contributed to the modest

effect sizes observed, since constraints at longer time scales (e.g., at the approximately 6-

min time windows we have used) may be less important than local constraints in guiding

the organization of behavior during a talk. As we have discussed, it is possible that the

way in which speakers recruit multiple modalities during a talk is significantly influenced

by the complexity of the information presented and, specifically, by how concepts are

represented in the slides (e.g., through text or figures). These factors (the complexity of
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the information, and the modality of information in the slides) vary locally, at shorter

time scales than the one we used. Previous research has shown that factors pertaining to

content can influence the coordination of multimodal behavior; for example, the use of

images during classroom instruction is accompanied by gestures that help disambiguate

them and aid integration between what is being said and what is being shown (Pozzer-

Ardenghi & Roth, 2007). The interdependence of gesture, language, and external objects

might be of such importance (Clark, 2005; Hutchins & Palen, 1997) that the best predic-

tor of the state of each modality at any given time is the state of the other modalities,

given the constraints of the specific message being conveyed and the objects available in

the environment. Future work could delve deeper into behaviors at a smaller temporal

grain size than the one we have chosen here, as it might be a more appropriate time scale

to observe this behavior of the system.

Regarding our second objective—of examining whether modalities vary in a coordinated

way, revealing system-like properties—results from both PCA solutions offer only sugges-

tive glimpses of system-like covariation among modalities. These behavioral signals are, at

least to a small extent, “moving together,” suggesting that the cognitive system is partly

controlling them as a coordinated unit. From a dynamic systems perspective, this would

help understand the ease of multimodal coordination, as the degrees of freedom the cogni-

tive system needs to control during the task are reduced (Kelso, 2009; Riley et al., 2011;

Shockley et al., 2009). The first PCA revealed patterns in the general strategies that differ-

ent speakers adopt when presenting complex information: It suggested that people who talk

faster also tend to move more and talk more loudly. This is in line with some of the find-

ings in the co-speech gesture literature indicating that gesturing facilitates fluency in

speech, in particular when it involves spatial language (Morsella & Krauss, 2004; Rauscher,

Krauss, & Chen, 1996). Similarly, people who have more slide changes in their presenta-

tions tend to move more. This makes sense given evidence that shows that when speakers

change topics (Cassell et al., 2001) or integrate new ideas with prior discourse (Alibali

et al., 2014; Enfield, 2009), they produce increased movement and gestures.

This pattern from the first PCA, in conjunction with the trends from the second PCA,

has implications for the extended mind hypothesis (Clark & Chalmers, 1998). It suggests

that lecture slides are integrated with the speaker’s behavior and may be functioning as a

part of the cognitive system itself. Studying the specific roles of the slides in the commu-

nicative process in more depth might help further clarify this possibility. Note that

although multiple combinations of the modalities are possible, speakers tend to adopt and

maintain a stable strategy across their whole presentation.7 This indicates that the system

is organizing itself in a way that achieves stability at longer time scales. Speaker behavior

enters a particular “region of activity space” (i.e., a specific subset of all the possible

combinations of the modalities), and it remains stable in that region. This is consistent

with the idea that individual differences are prominent, which was also suggested by our

regression analyses. Although in the present work we cannot identify the causal locus of

the stabilization of behavior, a variety of factors likely contribute, such as physical con-

straints of the environment, and pragmatic constraints of the topic or the discourse con-

text (including audience feedback) contribute to that process.
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The second PCA analysis also reveals some slight covariation across the different modal-

ities as they change over time. Though our results are only suggestive, if speakers subtly

adapt their modalities relative to one another during a talk, this would be characteristic of

soft-assembled, context-dependent systems (Kelso, 2009; Richardson et al., 2014). More

broadly, and perhaps more boldly, such a synergy would support the notion that different

modalities weave into each other and act as a functional group to give rise to meaning

(Hutchins & Palen, 1997; Pozzer-Ardenghi & Roth, 2007). In general, the patterns from the

second PCA are difficult to interpret, and some of its emerging patterns are puzzling. For

instance, literature examining prosodic prominence (Cole, Mo, & Hasegawa-Johnson, 2010)

shows that speech rate decreases as F0 and intensity increase. This is in contrast with some

of the patterns of the second PCA (i.e., positive covariation between all three), which sug-

gest that there might be more than prosodic prominence to the speakers’ multimodal perfor-

mance. One possibility is that the observed relationships are purely physical and respond to

the physiology of the vocal tract: A correlational study that asked people to change the vocal

effort of their speech found that when people speak softer, their fundamental frequency, and

speaking rate decrease as well (Black, 1961). An alternative possibility is that the covaria-

tion reflects emotional activation during public speaking. Though still debated, studies on

the acoustic properties of emotion have found that high emotional activation is usually

accompanied by speech with higher fundamental frequency, higher intensity, and higher rate

(see Scherer, 2003, for a review). Still another possibility is that the acoustic correlates of

prosodic prominence that have been reported at the word and sentential level do not hold

when looking at the dynamics of longer speech excerpts: The temporal scale of the observa-

tions is too coarse to capture more fine-grained relationships between modalities.

It is possible that additional measures related to the informational flow of the talk or

the quality of the performance are needed to clarify the patterns in the data. For instance,

it might be the case that effective and ineffective presenters have completely different

strategies of multimodal performance and that the mixture of ability levels in the sample

is making it difficult to discern the specific patterns of covariation in the speakers’ multi-

modal behavior. Previous research has shown that individual differences in verbal work-

ing memory (Gillespie, James, Federmeier, & Watson, 2014), spatial working memory

(Chu, Meyer, Foulkes, & Kita, 2014), and phonemic fluency (Hostetter & Alibali, 2007),

among others, affect the type and rate of co-speech gestures speakers make. Other work

has suggested that the effectiveness of a speaker’s message is associated with multimodal

behavioral signatures. For instance, the proportion of grooming movements and gestures

that a speaker makes modulates how effective gestures are in aiding message comprehen-

sion (Obermeier, Kelly, & Gunter, 2015). For future studies, it might be interesting to

obtain performance measures like learning outcomes of the audience or overall enjoyment

of the presentation to test if these are associated with distinctive combination patterns of

the modalities. It may be the case, for example, that speakers that show more consistency

in the patterns of multimodal behavior they use achieve higher comprehension of their

message.

Finally, some general caution is required when interpreting the results presented here.

First, while natural datasets allow us to study behavior as it happens in the real world
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and afford more ecologically valid inferences, they do so at the price of experimental

control. Aspects of the video recording that were out of our control such as distance from

the camera, general light level in the room, calibration of the microphone volume, and

the camera brightness at each talk could have affected the results presented here. We

made a deliberate effort to reduce the sources of noise by carefully selecting the videos

and preprocessing the data, but it is important to acknowledge this issue. Second, while

automated methods constitute great alternatives to analyze bigger datasets, they have

some limitations in their accuracy. The methods used in this paper showed good levels of

accuracy when compared to the performance of human coders. However, they may have

introduced some noise in the signals that could have made it more difficult to detect the

actual coordination of modalities. Third, we did not consider the content of these presen-

tations, as it was outside the scope of the present analysis. Still, as we have acknowl-

edged, the ebb and flow of slide changes, body, and voice may have been time-locked to

certain aspects of the information presented in the slides or talk. Future research could

use a co-registration of transcribed presentations, slides, and dynamics derived from auto-

mated methods in order to test this, although such corpora are still not widely available.

Lastly, our dataset comprised talks given by mostly male experienced presenters, based in

U.S. institutions, and under minimal time constraints. The trends and patterns found in

this study might (and most likely would) change when dealing with other levels of expe-

rience in presentations, more gender-balanced samples, more geographically and cultur-

ally diverse samples, and different time constraints. Exploring these variables and their

effects on multimodal signal control is an interesting direction for future research.

5. Conclusion

The use of different modalities of communication during complex information presen-

tation exhibits some weak but interesting regularities. System-like compression is

observed in the way the different modalities are coordinated. Body, speech, and slides

may begin to approximate an integrated unit during communicative performance across

the presentation, giving some support to the idea of an extended cognitive system. Further

exploring individual differences and including measures of informational complexity

could help further clarify the specific coordination synergies that speakers engage in dur-

ing multimodal communication.
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Notes

1. www.youtube.com/channel/UCRcuWjRqxZ2RHvEdZGAliWw.

2. https://vimeo.com/user8418321.

3. The R scripts and datasets we used in this project, as well as additional figures, are

publicly available in GitHub: https://github.com/camialviar/ComplexCommuni

cationDynamics.

4. This last component could reflect sex differences in pitch. This was not a variable of

interest to us, and so we do not test this in our dataset. However, it is also important to

note that some males exhibited perceptually higher pitches, so the relationship sug-

gested by component 3 between pitch and intensity might not be exclusively due to sex.

5. We set alpha for p to 0.05. By chance, one would anticipate no more than about

one of our coefficients to yield significance. Four significant coefficients suggest

our results are not due to type I error, though it is important to note that the

observed effects are small and future analyses, especially where models might

become more complex, would benefit from a correction for alpha.

6. We examined whether this peak reflects an increase in graph usage, following a

reviewer’s suggestion. We calculated the percentage of slide changes involving

graphs for five speakers, for whom window 8 had a big peak. The results suggest

that the peak was not driven by an increase in the percentage of graphs being used

between window 7 (M = 47.44%) and window 8 (M = 49.31%). A detailed content

analysis would be required to better clarify the variables driving the increase.

7. For the interested reader, figures showcasing the clustering of the data when pro-

jected in the first two components of the first PCA solution are available in the

GitHub repository for the project: https://github.com/camialviar/ComplexCommuni

cationDynamics.
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