

Linguistic Levels...

conversational topic, pragmatics, ... phrase structure, syntactic frames, ... syllables, words, ... speech rate, pause duration, ...

amplitude, frequenc(ies), pitch, ...

Time (s)

0187157

"Higher-Order" States

- Dynamics of the cognitive system produce **higher-order properties** that can be subjected to dynamic methods.
- These measurements are on a **nominal** scale, such as behavioral categories over time (e.g., emotions)
- Language is often studied in this manner: sounds, words, sentence structures, topics of conversation, etc.

Under the Hood

• If time series is:

 $\mathbf{x} = 1, 3, 2, 3, ..., x_N$

- RP = set of points (*i*, *j*) such that: $x_i - x_j = 0$
- In other words, set of points such that the numeric identifiers have a distance of zero from each other.

Exercises 1 & 2:

1. Convert Some Text 2. Build Some RPs

- You can eyeball a plot, but in real contexts we want some **quantification** so that plots (or, e.g., conditions) can be compared.
- Enter: recurrence quantification analysis (RQA).
 - -These are measures that describe the **extent and distribution** of points on the plot.

Embedding Dimension

- Interpretation in categorical data: how many states must match in order to count it as a recurrence.
- In previous analysis, dimension = 1
- What about 2? 3?
- Window, vector, sequence, etc.

(e.g., avoiding single-letter recurrence, as above).

Delay

- With most categorical data (behavior sequences, linguistic sequences, etc.) temporal ordering should probably be preserved (delay = 1).
- NB: Situation more complex with continuous data (tomorrow).

Radius

- The distance between units (or windows if dimension > 1) required in order to count (i, j) as a recurrent point.
- With category data: radius = 0.
- NB: Situation more complex with continuous data.

But, with categories...

- With most data of nominal codes (e.g., letters, words, etc.), the following parameters often suffice:
 - Embedding dimension: 1
 - Delay: 1
 - Radius: .0001

Exercise 3:

Quantify Some Plots

Outline

- Time series of higher-order states

 Analysis of series of behavioral categories
- The recurrence plot (RP) and "textures"
- Quantifying the plot (RQA)
- Examples and exercises

Outline

- Time series of higher-order states – Analysis of series of behavioral categories
- The recurrence plot (RP) and "textures"
- Quantifying the plot (RQA)
- Examples and exercises
- Extensions and applications

Extensions and Applications

- Windowed recurrence analysis
- Fresh work: dynamics of texts
- RQA as "dynamical NLP"

Nonuniformity in behavioral dynamics

Behavioral "modes" Stable, but temporary, functional structures

Coco & Dale, 2014

- With Dr. Moreno Coco University of Edinburgh
- **R** package for categorical recurrence (adaptable for continuous recurrence)
 - Basic (C)RQA measures
 - Diagonalwise recurrence (tomorrow afternoon)
 - Windowed recurrence measures

Cattail Down

by MeWithoutYou	headed east out of st. paul, we stopped for water.
	rested in the cemetery,
	watched the mississippi.
	running out of food stamps,
	found a bag along the footpath
	off highway 61 filled with
	what looked like marijuana.
	(don't worry mom, we left it there)
	hopped a grainrail out of pig's eye
	toward milwaukee, a deer
	between the tower and the tracks, saw right through us.
	said, "you don't know where you came you don't know where you're going,
	you mink you're you-

Extensions and Applications

- Windowed recurrence analysis
- Fresh work: dynamics of texts
- RQA as "dynamical NLP"

RQA for Text Analysis

- **Genre** identification in educational data mining contexts.
- Do "**textual dynamics**" differ across history, science, etc. texts?
- Do these dynamic patterns correlate with accessibility, learning gains, etc.?

"Cohesion"

Extensions and Applications

- Windowed recurrence analysis
- Fresh work: dynamics of texts
- RQA as "dynamical NLP"

30 30 10	RQA	NLP Connection					
10 20 30 Time	DET	compressibility ratio					
	RR	co-occurrence or frequency					
	MAXLINE	longest common subsequence (LCS)					
	ENTROPY	n-gram variability					
Dale et al., 2018, ArXiV, https://arxiv.org/pdf/1803.07136.pdf							

